Molecular Interpretation of the Dielectric Behaviour of Biological Material

  • E. H. Grant
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)


The dielectric behaviour of biological tissue depends ultimately upon the properties of the molecules comprising it. The interpretation of the dielectric properties of biological material can therefore be made at a molecular level, although it is sometimes more convenient and appropriate to consider them in terms of cells and membranes. This is particularly so when in vivo, rather than in vitro, situations are being discussed.


Dipole Moment Dielectric Relaxation Biological Macromolecule Dielectric Behaviour Dielectric Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.P. Schwan, this volume.Google Scholar
  2. 2.
    G.P. Jones, M. Gregson and M. Davies, Total dielectric saturation observed in a dipolar system, Chem. Phys. Letters 4: 33 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    E.H. Grant, R.J. Shepphard and G.P. South, “Dielectric behaviour of biological molecules in solution”, Oxford University Press, Oxford (1978).Google Scholar
  4. 4.
    S. Takashima, Study of dielectric behaviour of DNA in shear gradient, Biopolymers 12: 145 (1973).CrossRefGoogle Scholar
  5. 5.
    C.G. Essex, E.H. Grant, R.J. Sheppard, G.P. South, M.S. Symonds, G.L. Mills and J. Slack, Dielectric properties of normal and abnormal lipoprotins in aqueous solution, Ann. N.Y. Acad. Sci. 303: 142 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    J.G. Kirkwood, Dielectric polarisation of polar liquids, J. Chem. Phys. 7: 911 (1939).ADSCrossRefGoogle Scholar
  7. 7.
    G.P. South and E.H. Grant, Dielectric dispersion and dipole moment of myoglobin in water, Proc. Roy. Soc. Lond. A. 328: 371 (1972).Google Scholar
  8. 8.
    P. Debye, “Polar Molecules”, Reinhold, New York (1929).Google Scholar
  9. 9.
    J.L. Oncley, Reference 20, Chapter 22.Google Scholar
  10. 10.
    E.H. Grant, G.P. South, S. Takashima and H. Ichimura, Dielectric dispersion in aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin, Biochem. J. 122: 691 (1971).Google Scholar
  11. 11.
    G. Schwarz, A theory of the low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66: 2636 (1962).CrossRefGoogle Scholar
  12. 12.
    G.S. Chana, M.J. Chapman, R.J. Sheppard, G.L. Mills, S. Goldstein and E.H. Grant, A comparative dielectric study of human serum low density lipoprotein before and after partial digestion by trypsin, J. Supramol. Struct. 13: 47 (1980).CrossRefGoogle Scholar
  13. 13.
    H. Pauly and H.P. Schwan, The impedance of a suspension of spherical particles surrounded by a shell, Zs. f. Naturforshung 14B: 125 (1959).Google Scholar
  14. 14.
    M.N. Afsar and J.B. Hasted, Measurements of the optical constants of liquid H2O and D20 between 6 and 450 cm-1 J. Opt. Soc. Am. 67: 902 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    E.H. Grant, S. Szwarnowski and R.J. Sheppard, Dielectric properties of water in the microwave and far infrared regions, “Biological Effect of Nonionizing Radiation”. American Chemical Society Symposium Series 157: 47 (1981).Google Scholar
  16. 16.
    E.H. Grant, Relationship between relaxation time and viscosity for water, J. Chem. Phys. 26: 1575 (1957).ADSGoogle Scholar
  17. 17.
    H.P. Schwan, Electrical properties of tissue and cell suspensions, in “Advances in Biological and Medical Physics”, J.H. Lawrence and C.A. Tobias, eds., Academic Press, New York (1957).Google Scholar
  18. 18.
    E.H. Grant, Electric behaviour of egg albumen solutions at ultra-high frequencies, Nature 196: 1194 (1962).ADSCrossRefGoogle Scholar
  19. 19.
    E.H. Grant, Dielectric dispersion in bovine serum albumen, J. Mol. Biol. 19: 133 (1966).CrossRefGoogle Scholar
  20. 20.
    E.J. Cohn and J.T. Edsall, “Proteins, Amino-Acids and Peptides”, Reinhold, New York (1942).Google Scholar
  21. 21.
    E.H. Grant, B.G.R. Mitton, G.P. South and R.J. Sheppard, An investigation by dielectric methods of hydration in myoglobin solutions, Biochem. J. 139: 375 (1974).Google Scholar
  22. 22.
    B.E. Pennock and H.P. Schwan, Further observations on the electrical properties of haemoglobin bound water, J. Phys. Chem. 73: 2600 (1969).CrossRefGoogle Scholar
  23. 23.
    G.P. South and E.H. Grant, The contribution of proton fluctuation to dielectric relaxation in protein solutions, Biopolymers 12: 1937 (1973).CrossRefGoogle Scholar
  24. 24.
    T.J. Buchanan, G.H. Haggis, J.B. Hasted and B.G. Robinson, The dielectric estimation of protein hydration, Proc. Roy. Soc. Lond. A213: 379 (1952).ADSCrossRefGoogle Scholar
  25. 25.
    K.R. Foster, J.L. Schepps, R.D. Stoy and H.P. Schwan, Dielectric properties of brain tissue between 0.01 and 10GHz, Phys. Med. Biol. 24: 1177 (1979).CrossRefGoogle Scholar
  26. 26.
    A.W.J. Dawkins, C. Gabriel, R.J. Sheppard and E.H. Grant, Electrical properties of lens material at microwave frequencies, Phys. Med. Biol. 26: 1 (1981).CrossRefGoogle Scholar
  27. 27.
    A.W.J. Dawkins, R.J. Shepphard and E.H. Grant, An on-line computer based system for performing time domain spectroscopy. 1. Main features of the basic system, J. Phys. E. Sci. Instrum. 12: 1091 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • E. H. Grant
    • 1
  1. 1.Physics Department, Queen Elizabeth CollegeUniversity of LondonLondonUK

Personalised recommendations