Advertisement

Dielectric Properties of Biological Tissues and Cells at ELF-Frequencies

  • H. P. Schwan
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)

Abstract

The dielectric properties of tissues and cell suspensions in the RF-and MW-range and mechanism responsible for such data have been summarized in our preceeding lecture1 . Here we shall review low frequency data and what is known so far about possible mechanism involved.

Keywords

Dielectric Property Erythrocyte Ghost Effective Dielectric Constant Stray Field Striate Muscle Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Schwan, Dielectric Properties of Biological Tissue and Cells at RF- and MW-Frequencies in: “Advances in biological Effects and Dosimetry of Low Energy Electromagnetic Fields,” this volume (1981).Google Scholar
  2. 2.
    H. P. Schwan, Determination of Biological Impedances in: “Physical Techniques in Biological Research,” Volume 6, W. L. Nastuk, Ed., Academic Press, New York (1963).Google Scholar
  3. 3.
    H. P. Schwan, Electrical properties of muscle tissue at low frequencies, Zs. F. Naturforschung 9b: 245 (1954).Google Scholar
  4. 4.
    H. P. Schwan, G. Schwarz, J. Maczuk and H. Pauly, On the low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66: 2626 (1962).CrossRefGoogle Scholar
  5. 5.
    H. P. Schwan, Electrical Properties of Tissue and Cell Suspensions, in: “Advances in Biological and Medical Physics Vol. 5”, J. H. Lawrence and C. A. Tobias, ed., Academic Press, New York (1957).Google Scholar
  6. 6.
    H. P. Schwan and J. Maczuk, Electrical relaxation phenomena of biological cells and colloidal particles at low frequencies, Proc. of the first National Biophysics Conference, p. 348 Yale University Press (1959).Google Scholar
  7. 7.
    G. Schwarz, A theory of low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66: 2636 (1962).CrossRefGoogle Scholar
  8. 8.
    G. Falk and P. Fatt, Linear electrical properties of striated muscle fibers observed with intracellular electrodes, Proc. Royal Soc. B 160: 69 (1964).ADSCrossRefGoogle Scholar
  9. 9.
    W. H. Freygang, Jr., S. X. Rapoport and L. D. Peachey, Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure, J. Gen. Physiol. 50: 2437 (1967).CrossRefGoogle Scholar
  10. 10.
    H. P. Schwan, T. P. Bothwell and F. J. Wiercinski, Electrical properties of beef erythrocyte suspensions at low frequencies, Fed. Proc. Am. Soc. of Exp. Biol. 13: 15 1954 ).Google Scholar
  11. 11.
    H. P. Schwan and E. L. Carstensen, Dielectric properties of membrane of lysed erythrocythes, Science 125: 985 (1957).ADSCrossRefGoogle Scholar
  12. 12.
    H. P. Schwan and C. F. Kay, Capacitive properties of living tissues, Circulation Research 5: 439 (1957).Google Scholar
  13. 13.
    H. P. Schwan and H. J. Morowitz, Electrical properties of the membranes of the pleuropneumonia-like organism A 5969, Biophys. J. 2: 395 (1962).CrossRefGoogle Scholar
  14. 14.
    H. P. Schwan, S. Takashima, V. K. Miyamoto and W. Stoeckenius, Electrical properties of phospholipid vesicles, Biophys. J. 10: 1102 (1970).CrossRefGoogle Scholar
  15. 15.
    W. R. Redwood, S. Takashima, H. P. Schwan and T. E. Thompson, Dielectric studies on homogeneous phosphatidylcholine vesicles, Biochim. Biophys. Acta 255: 577 1972 ).Google Scholar
  16. 16.
    S. Takashima and H. P. Schwan, Passive electrical properties of squid axon membrane, J. Membr. Biol. 17: 51 (1974).CrossRefGoogle Scholar
  17. 17.
    E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 5: 289 (1965);CrossRefGoogle Scholar
  18. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 7: 493 (1967);CrossRefGoogle Scholar
  19. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 8: 536 (1968);CrossRefGoogle Scholar
  20. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 9: 634 (1969).CrossRefGoogle Scholar
  21. 18.
    C. W. Einolf, Jr. and E. L. Carstensen, Low frequency dielectric dispersion in suspensions of ion-exchange resins, J. Phys. Chem. 75: 1091 (1971).CrossRefGoogle Scholar
  22. 19.
    C. W. Einolf, Jr. and E. L. Carstensen, Passive electrical properties of micro-organisms. V. Low frequency dielectric dispersion of bacteria, Biophys. J. 13: 8 (1973).CrossRefGoogle Scholar
  23. 20.
    P. Fatt, An analysis of the transverse electrical impedance of striated muscle, Proc. Roy. Soc. B 159: 606 (1964).ADSCrossRefGoogle Scholar
  24. 21.
    W. R. Adey and S. M. Bawin, Brain interactions with weak electric and magnetic fields, Neurosciences Res. Bull. 15, MIT Press, January (1977).Google Scholar
  25. 22.
    S. Takashima, Membrane capacity of squid axon during hyper-and depolarization, J. Membr. Biol. 27: 21 (1976).CrossRefGoogle Scholar
  26. 23.
    H. M. Fishman, Personal communication.Google Scholar
  27. 24.
    D. Poussart, L. E. Moore and H. M. Fishman, Ion movement and kinetics in squid axon. 1. Complex admittance, Ann. N. Y. Acad. Sci. 303: 355 (1977).Google Scholar
  28. 25.
    H. M. Fishman, D. Poussart, L. E. Moore and E. Siebenga, K-conduction description for the low-frequency impedance and admittance of squid axon. J. Membr. Biol. 32: 255 (1977).CrossRefGoogle Scholar
  29. 26.
    L. J. De Felice, Personal communication.Google Scholar
  30. 27.
    L. J. De Felice, W. J. Adelman, Jr., D. E. Clapham and A. Mauro, Second order admittance in squid axon, Abstract, ASBC/Biophys. Soc. Mtg. (1980).Google Scholar
  31. 28.
    W. J. Adelman, Jr., Personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. P. Schwan
    • 1
    • 2
  1. 1.Max Planck Institut für BiophysikFrankfurt a. MainGermany
  2. 2.Department of Bioengineering D3University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations