Skip to main content

Dielectric Properties of Biological Tissues and Cells at ELF-Frequencies

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 49))

Abstract

The dielectric properties of tissues and cell suspensions in the RF-and MW-range and mechanism responsible for such data have been summarized in our preceeding lecture1 . Here we shall review low frequency data and what is known so far about possible mechanism involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Schwan, Dielectric Properties of Biological Tissue and Cells at RF- and MW-Frequencies in: “Advances in biological Effects and Dosimetry of Low Energy Electromagnetic Fields,” this volume (1981).

    Google Scholar 

  2. H. P. Schwan, Determination of Biological Impedances in: “Physical Techniques in Biological Research,” Volume 6, W. L. Nastuk, Ed., Academic Press, New York (1963).

    Google Scholar 

  3. H. P. Schwan, Electrical properties of muscle tissue at low frequencies, Zs. F. Naturforschung 9b: 245 (1954).

    Google Scholar 

  4. H. P. Schwan, G. Schwarz, J. Maczuk and H. Pauly, On the low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66: 2626 (1962).

    Article  Google Scholar 

  5. H. P. Schwan, Electrical Properties of Tissue and Cell Suspensions, in: “Advances in Biological and Medical Physics Vol. 5”, J. H. Lawrence and C. A. Tobias, ed., Academic Press, New York (1957).

    Google Scholar 

  6. H. P. Schwan and J. Maczuk, Electrical relaxation phenomena of biological cells and colloidal particles at low frequencies, Proc. of the first National Biophysics Conference, p. 348 Yale University Press (1959).

    Google Scholar 

  7. G. Schwarz, A theory of low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66: 2636 (1962).

    Article  Google Scholar 

  8. G. Falk and P. Fatt, Linear electrical properties of striated muscle fibers observed with intracellular electrodes, Proc. Royal Soc. B 160: 69 (1964).

    Article  ADS  Google Scholar 

  9. W. H. Freygang, Jr., S. X. Rapoport and L. D. Peachey, Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure, J. Gen. Physiol. 50: 2437 (1967).

    Article  Google Scholar 

  10. H. P. Schwan, T. P. Bothwell and F. J. Wiercinski, Electrical properties of beef erythrocyte suspensions at low frequencies, Fed. Proc. Am. Soc. of Exp. Biol. 13: 15 1954 ).

    Google Scholar 

  11. H. P. Schwan and E. L. Carstensen, Dielectric properties of membrane of lysed erythrocythes, Science 125: 985 (1957).

    Article  ADS  Google Scholar 

  12. H. P. Schwan and C. F. Kay, Capacitive properties of living tissues, Circulation Research 5: 439 (1957).

    Google Scholar 

  13. H. P. Schwan and H. J. Morowitz, Electrical properties of the membranes of the pleuropneumonia-like organism A 5969, Biophys. J. 2: 395 (1962).

    Article  Google Scholar 

  14. H. P. Schwan, S. Takashima, V. K. Miyamoto and W. Stoeckenius, Electrical properties of phospholipid vesicles, Biophys. J. 10: 1102 (1970).

    Article  Google Scholar 

  15. W. R. Redwood, S. Takashima, H. P. Schwan and T. E. Thompson, Dielectric studies on homogeneous phosphatidylcholine vesicles, Biochim. Biophys. Acta 255: 577 1972 ).

    Google Scholar 

  16. S. Takashima and H. P. Schwan, Passive electrical properties of squid axon membrane, J. Membr. Biol. 17: 51 (1974).

    Article  Google Scholar 

  17. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 5: 289 (1965);

    Article  Google Scholar 

  18. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 7: 493 (1967);

    Article  Google Scholar 

  19. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 8: 536 (1968);

    Article  Google Scholar 

  20. E. L. Carstensen, et al., Passive electrical properties of micro-organisms, I-IV Biophys. J. 9: 634 (1969).

    Article  Google Scholar 

  21. C. W. Einolf, Jr. and E. L. Carstensen, Low frequency dielectric dispersion in suspensions of ion-exchange resins, J. Phys. Chem. 75: 1091 (1971).

    Article  Google Scholar 

  22. C. W. Einolf, Jr. and E. L. Carstensen, Passive electrical properties of micro-organisms. V. Low frequency dielectric dispersion of bacteria, Biophys. J. 13: 8 (1973).

    Article  Google Scholar 

  23. P. Fatt, An analysis of the transverse electrical impedance of striated muscle, Proc. Roy. Soc. B 159: 606 (1964).

    Article  ADS  Google Scholar 

  24. W. R. Adey and S. M. Bawin, Brain interactions with weak electric and magnetic fields, Neurosciences Res. Bull. 15, MIT Press, January (1977).

    Google Scholar 

  25. S. Takashima, Membrane capacity of squid axon during hyper-and depolarization, J. Membr. Biol. 27: 21 (1976).

    Article  Google Scholar 

  26. H. M. Fishman, Personal communication.

    Google Scholar 

  27. D. Poussart, L. E. Moore and H. M. Fishman, Ion movement and kinetics in squid axon. 1. Complex admittance, Ann. N. Y. Acad. Sci. 303: 355 (1977).

    Google Scholar 

  28. H. M. Fishman, D. Poussart, L. E. Moore and E. Siebenga, K-conduction description for the low-frequency impedance and admittance of squid axon. J. Membr. Biol. 32: 255 (1977).

    Article  Google Scholar 

  29. L. J. De Felice, Personal communication.

    Google Scholar 

  30. L. J. De Felice, W. J. Adelman, Jr., D. E. Clapham and A. Mauro, Second order admittance in squid axon, Abstract, ASBC/Biophys. Soc. Mtg. (1980).

    Google Scholar 

  31. W. J. Adelman, Jr., Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Schwan, H.P. (1983). Dielectric Properties of Biological Tissues and Cells at ELF-Frequencies. In: Grandolfo, M., Michaelson, S.M., Rindi, A. (eds) Biological Effects and Dosimetry of Nonionizing Radiation. NATO Advanced Study Institutes Series, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4253-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4253-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4255-7

  • Online ISBN: 978-1-4684-4253-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics