Skip to main content

Radiofrequency and Microwave Effects on Immunological and Hematopoietic Systems

  • Chapter
Biological Effects and Dosimetry of Nonionizing Radiation

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 49))

Abstract

In technologically advanced countries, radiofrequency and microwave radiation (RF/MWR) is interwoven with daily life, affecting all to some degree, many to a greater degree. Studies by numerous investigators have raised the possibility that the immunological and hematological systems of humans and experimental animals are particularly susceptible to RF/MWR. Several recent and extensive reviews are available (1–4). The major goal of this paper is to indicate the complex nature of the hematological and particularly the immunological systems, the impact of thermoregulation and temperature changes on immune function, and the general nature of available (published) data on RF/MWR effects. The possible effects of microwaves on one cell type of particular interest, namely the lymphocyte, will be examined in greater depth, to illustrate both the known and the missing data, as well as confounding parameters. Thus, it is hoped that this review will not only indicate our current limited knowledge, but will provide some guidelines for design and evaluation of future reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Smialowicz, Hematologic and immunologic effects of nonionizing electromagnetic radiation, Bull. N.Y. Acad. Med. 55: 1094 (1979).

    Google Scholar 

  2. S.M. Michaelson,Microwave and radiofrequency radiation World Health Organization, Copenhagen (1977).

    Google Scholar 

  3. S.M. Michaelson, Microwave biological effects: An overview, Proc. IEEE 68: 40 (1980).

    Article  Google Scholar 

  4. B.D. McLees, and E.D. Finch, Analysis of reported physiologic effects of microwave radiation, Adv. Biol. Med. Physics 14: 163 (1973).

    Google Scholar 

  5. C.F. Nathan, H.W. Murray, and Z.A. Cohn, The macrophage as an effector cell, N. Engl. J. Med. 303: 622 (1980).

    Article  Google Scholar 

  6. E.L. Reinherz, and S.F. Schlossman, Regulation of the immune response - Inducer and suppressor T-lymphocyte subsets in human beings, N. Engl. J. Med. 303: 370 (1980).

    Article  Google Scholar 

  7. A.S. Rosenthal, Regulation of the immune response - Role of the macrophage, N. Engl. J. Med. 303: 1153 (1980).

    Article  Google Scholar 

  8. E.R. Unanue, Cooperation between mononuclear phagocytes and lymphocytes in immunity, N. Engl. J. Med. 303: 977 (1980).

    Google Scholar 

  9. F.W. Ruscetti, and R.C. Gallo, Human T-lymphocyte growth factor: Regulation of growth and function of T-lymphocytes, Blood 57: 379 (1981).

    Google Scholar 

  10. E.R. Stiehm, and V.A. Fulginiti, “Immunologic Disorders in Infants and Children,” Second Edition, W.B. Saunders Company,, Philadelphia (1980).

    Google Scholar 

  11. K.A. Smith, L.B. Lachman, J.J. Oppenheim, and M.F. Favata, The functional relationship of the interleukins. J. Exp. Med. 151: 1551 (1980).

    Article  Google Scholar 

  12. T. Diamantstein, R.E. Handschumacher, J.J. Oppenheim, D.L. Rosenstreich, E.R. Unanue, B.H. Waksman, and D.D. Wood, Nonspecific “lymphocyte activating” factors produced by macrophages. J. Immunol. 122: 2633 (1979).

    Google Scholar 

  13. N.J. Roberts, Jr., Temperature and host defense, Microbiol. Rev. 43: 241 (1979).

    Google Scholar 

  14. M.J. Kluger, The evolution and adaptive value of fever, Amer. Scientist 66: 38 (1978).

    ADS  Google Scholar 

  15. W.R. Beisel, Metabolic response to infection, Ann. Rev. Med. 26: 9 (1975).

    Article  Google Scholar 

  16. M.J. Kluger, Fever, Pediatrics 66: 720 (1980).

    Google Scholar 

  17. N.J. Roberts, Jr., and R.T. Steigbigel, Hyperthermia and human leukocyte functions: Effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils, Infect. Immun. 18: 673 (1977).

    Google Scholar 

  18. N.J. Roberts, Jr., and K. Sandberg, Hyperthermia and human leukocyte functions. II. Enhanced production of and response to leukocyte migration inhibition factor (LIF), J. Immunol. 122: 1990 (1979).

    Google Scholar 

  19. S. Barafiski, and P. Czerski, Biological effects of microwaves. Experimental data, in: “Biological Effects of Microwaves,” Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania (1976).

    Google Scholar 

  20. M.J. Kluger, “Fever. Its Biology, Evolution, and Function,” Princeton University Press, Princeton, New Jersey (1979).

    Google Scholar 

  21. S.M. Michaelson, Thermal effects of single and repeated exposures to microwaves- A review, in: “Biologic Effects and Health Hazards of Microwave Radiation,”P. Czerski, K. Ostrowski, M.L. Shore, Ch. Silverman, M.J. Suess, B. Waldeskog, eds., Polish Medical Publishers, Warsaw (1974).

    Google Scholar 

  22. S. Stern, L. Margolin, B. Weiss, S-T Lu, and S.M. Michaelson, Microwaves: Effects on thermoregulatory behavior in rats. Science 206: 1198 (1979).

    Article  ADS  Google Scholar 

  23. R.J. Smialowicz, M.M. Riddle, P.L. Brugnolotti, R.R. Rogers, and K.L. Compton, Detection of subtle microwave heating in 5-hydroxytryptamine-induced hypothermic mice, Bioelectromagnetics 1: 210 (1980).

    Article  Google Scholar 

  24. E.R. Adair, Metabolic adjustments during whole-body 2450 MHz CW microwave exposure. Bioelectromagnetics 1: 209 (1980).

    Google Scholar 

  25. S. Baranski, and P. Czerski, Interaction of microwaves with living systems, in: “Biological Effects of Microwaves,” Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania (1976).

    Google Scholar 

  26. W.G. Lotz, Influence of the circadian rhythm on the adrenocortical response to microwave exposure, Bioelectromagnetics 1: 244 (1980).

    Google Scholar 

  27. J.A.J. Stolwijk, Responses to the thermal environment, Fed. Proc. 36: 1655 (1977).

    Google Scholar 

  28. D.I. McRee, Review of Soviet/Eastern European research on health aspects of microwave radiation, Bull. N.Y. Acad. Med. 55: 1133 (1979).

    Google Scholar 

  29. W. Stodolnick-Baranska, Lymphoblastoid transformation of lymphocytes in vitro after microwave irradiation, Nature 214:102 (1967T.

    Google Scholar 

  30. W. Stodolnik-Baranska, The effects of microwaves on human lymphocyte cultures, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, K. Ostrowski, M.L. Shore, Ch. Silverman, M.J. Suess, B. Waldeskog, eds., Polish Medical Publishers, Warsaw (1974).

    Google Scholar 

  31. P. Czerski, Microwave effects on the blood-forming system with particular reference to the lymphocyte, Ann. N.Y. Acad. Sci. 247: 232 (1975).

    Article  ADS  Google Scholar 

  32. D.A. Holm, and L.K. Schneider, The effects of non-thermal radio frequency radiation on human lymphocytes in vitro, Experentia 26: 992 (1970).

    Article  Google Scholar 

  33. E. Sh. Ismailov, The effect of microwaves on erythrocyte potassium and sodium ion permeability, Biol. Nauki 14: 58 (1971).

    Google Scholar 

  34. D.J. Peterson, L.M. Partlow, and 0.P. Gandi, An investigation of the thermal and athermal effects of microwave irradiation on erythrocytes, IEEE Trans. Biomed. Eng. 26: 428 (1979).

    Article  Google Scholar 

  35. P. Bodel, and H. Miller, Pyrogen from mouse macrophages causes fever in mice, Proc. Soc. Exp. Biol. Med. 151: 93 (1976).

    Google Scholar 

  36. I.L. Bennett, Jr., and L. E. Cluff, Bacterial pyrogens, Pharmacol. Rev. 9: 427 (1957).

    Google Scholar 

  37. F. Halberg, W.W. Spink, and J.J. Bittnew, Protection by aldosterone and 11, 17-oxycorticoids against effects of brucella somatic antigen in adrenalectomized mice, Endocrinol. 59: 380 (1956).

    Google Scholar 

  38. W.P. Larson, R.N. Bieter, M. Levine, and W.F. McLimans, Temperature reactions in mice infected with pneumococci, Proc. Sci. Exp. Biol. Med. 42: 649 (1939).

    Google Scholar 

  39. J.C. Lin, J.C. Nelson, and M.E. Ekstrom, Effects of repeated exposure to 148-MHz radio waves on growth and hematology of mice, Radio Sci. 14 (suppl.): 173 (1979).

    Article  ADS  Google Scholar 

  40. J.F. Spalding, R.W. Freyman, and L.M. Holland, Effects of 800-MHz electromagnetic radiation on body weight, activity, hematopoiesis and life span in mice, Health Phys. 20: 421 (1971).

    Article  Google Scholar 

  41. J.C. Lin, M.J. Ottenbreit, SL Wang, S. Inone, R.O. Bollinger, and M. Fracassa, Microwave effects on granulocyte and macrophage precursor cells of mice in vitro. Radiat. Res. 80: 292 (1979).

    Google Scholar 

  42. D. Rotkovskâ, and A. Vacek, Effect of high-frequency electromagnetic field upon haemopoietic stem cells in mice, Folia Biol. (Praha) 18: 292 (1972).

    Google Scholar 

  43. D. Rotkovskâ, and A. Vacek, The effect of electromagnetic radiation on the hematopoietic stem cells of mice, Ann. N.Y. Acad. Sci. 247: 243 (1975).

    Article  ADS  Google Scholar 

  44. C.P. Mayers, and J.A. Habeshaw, Depression of phagocytosis: A non-thermal effect of microwave radiation as a potential hazard to health, Int. J. Radiat. Biol. 24: 449 (1973).

    Article  Google Scholar 

  45. A.S. Hyde, and J.J. Freidman, Some effects of acute and chronic microwave irradiation of mice, in: “Thermal Problems in Aerospace Medicine,” J.D. Hardy, ed., Urwin Limited, Surrey (1968).

    Google Scholar 

  46. L. Miro, R. Loubière, and A. Pfister, Effects of microwaves on the cell metabolism of the reticulo-histocytic system, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, K. Ostrowski, M.L. Shore, Ch. Silverman, M.J. Suess, and B. Waldeskog, eds., Polish Medical Publishers, Warsaw (1974).

    Google Scholar 

  47. P. Czerski, E. Paprocka-Slonka, M. Siekierzynski, and A. Stolarska, Influence of microwave radiation on the hematopoietic system, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, K. Ostrowski, M.L. Shore, Ch. Silverman, M.J. Suess, and B. Waldeskog, eds., Polish Medical Publishers, Warsaw (1974).

    Google Scholar 

  48. P. Czerski, E. Paprocka-Slonka, and A. Stolarska, Microwave irradiation and the circadian rhythm of bone marrow cell mitosis, J. Microwave Power 9: 31 (1974).

    Google Scholar 

  49. S. Prausnitz, and C. Süsskind, Effects of chronic microwave irradiation on mice, IRE Trans. Biomed. Electron. 9: 104 (1962).

    Google Scholar 

  50. S.F. Gorodetskaya, The influence of an SHF electromagnetic field on the reproduction, peripheral blood composition, conditioned-reflex activity, and the morphology of the internal organs of white mice, in: “Biological Action of Ultrasound and Super-High Frequency Electromagnetic Oscillations,” A.A. Gorodetsky, ed., Academy of Sciences, Kiev (1964).

    Google Scholar 

  51. S. Szmigielski, M. Luczak, M. Janiak, M. Kobus, B. Laskowska, E. DeClercq, and P. DeSomer, In vitro and in vivo inhibition of virus multiplication by microwave hyperthermia, Arch. Virol. 53:71 (1977).

    Google Scholar 

  52. M.J. Kluger, D.H. Ringler, and M.R. Anver, Fever and survival, Science 188: 166 (1975).

    Article  ADS  Google Scholar 

  53. H.A. Bernheim, P.T. Bodel, P.W. Askenase, and E. Atkins, Effects of fever on host defense mechanisms after infection in the lizard Dipsosaurus dorsalis, Br. J. Exp. Path. 59: 76 (1978).

    Google Scholar 

  54. H.A. Bernheim, and M.J. Kluger, Fever: Effect of drug-induced antipyresis on survival. Science 193: 237 (1976).

    Article  ADS  Google Scholar 

  55. R.J. Smialowicz, The effect of microwaves (2450 MHz) on lymphocyte blast transformation in vitro, in: “Biological Effects of Electromagnetic Waves,” C.C. Johnson, M.L. Shore eds., Rockville, Maryland, HEW Publ. (FDA)77–8010 (1976).

    Google Scholar 

  56. W.Wiktor-Jedrzejczak, A. Ahmed, K.W. Sell, P. Czerski, and W.M. Leach, Microwaves induce an increase in the frequency of complement receptor-bearing lymphoid spleen cells in mice, J. Immunol. 118: 1499 (1977).

    Google Scholar 

  57. W. Wiktor-Jedrzejczak, A. Ahmed, P. Czerski, W.M. Leach, and K.W. Sell, Immune response of mice to 2450-MHz microwave radiation: Overview of immunology and empirical studies of lymphoid splenic cells, Radio Sci. 12 (suppl): 209 (1977).

    Article  ADS  Google Scholar 

  58. W. Wiktor-Jedrzejczak, A. Ahmed, P. Czerski, W.M. Leach, and K.W. Sell, Increase in the frequency of Fc receptor (FcR) bearing cells in the mouse spleen following a single exposure of mice to 2450 MHz microwaves, Biomedicine 27: 250 (1977).

    Google Scholar 

  59. W. Wiktor-Jedrzejczak, A. Ahmed, P. Czerski, W.M. Leach, and K.W. Sell, Effect of microwaves (2450-MHz) on the immune system in mice: Studies of nucleic acid and protein synthesis, Bioelectromagnetics 1: 161 (1980).

    Article  Google Scholar 

  60. C.J. Schlagel, and W. Wiktor-Jedrzejczak, Possible humoral mechanism of 2450 MHz microwave-induced increase in complement receptor positive cells as studied using a modified diffusion chamber culture technique, Bioelectromagnetics 1: 247 (1980).

    Article  Google Scholar 

  61. R.J. Smialowicz, M.M. Riddle, P.L. Brugnolotti, J.M. Sperrazza and J.B. Kinn, Evaluation of lymphocyte function in mice exposed to 2450 MHz (CW) microwaves, in: “Proc. 1978 Symp. Electromagnetic Fields in Biological Systems,” S.S. Stuchly, ed., International Microwave Power Institute, Edmonton, Canada (1979).

    Google Scholar 

  62. R.P. Liburdy, Radiofrequency radiation alters the immune system: Modulation of T- and B-lymphocyte levels and cell-mediated immunocompetence by hyperthermic radiation, Radiat. Res. 77: 34 (1979).

    Google Scholar 

  63. R.P. Liburdy, Radiofrequency radiation alters the immune system. II. Modulation of in vivo lymphocyte circulation, Radiat. Res. 83: 66 (1980).

    Google Scholar 

  64. R.P. Liburdy, Effects of radio-frequency radiation on inflammation, Radio Sci. 12 (suppl): 179 (1977).

    Article  ADS  Google Scholar 

  65. W.G. Lotz, and S.M. Michaelson, Temperature and corticosterone relationships in microwave-exposed rats, J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 44: 438 (1978).

    Google Scholar 

  66. M. Lauwasser, and J.W. Shands, Jr., Depressed mitogen responsiveness of lymphocytes at skin temperature, Infect. Immun. 24: 454 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Roberts, N.J. (1983). Radiofrequency and Microwave Effects on Immunological and Hematopoietic Systems. In: Grandolfo, M., Michaelson, S.M., Rindi, A. (eds) Biological Effects and Dosimetry of Nonionizing Radiation. NATO Advanced Study Institutes Series, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4253-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4253-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4255-7

  • Online ISBN: 978-1-4684-4253-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics