Neuroendocrine Response to Microwave/Radiofrequency Energies

  • Sol M. Michaelson
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)


To maintain homeostasis, a mammal possesses two control mechanisms that react to changes in internal and external environments (stimuli or stress). These two control mechanisms are the neural and endocrine systems. Separation of endocrine from neural control is not always possible as neural signals are integrated at the hypothalamus to react to deviations in the internal or external environments. Hypothalamic-hypophysial-adrenocortical (HHA), hypothalamic-hypophysial-thyroidal (HHT), and hypothalamic-hypophysial-somatotrophic (HHS) are three endocrine systems that participate in the “stress” response. Generally, they operate through a negative feed-back mechanism.


Microwave Radiation Neuroendocrine System Endocrine Gland Specific Absorption Rate Neuroendocrine Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Selye, “Stress”, Acta, Inc., Montreal (1950).Google Scholar
  2. 2.
    H. Matsuyama, A. Ruhmann-Wemhold, and D. H. Nelson, Radio immunoassay of plasma ACTH in intact rats, Endocrinol. 88: 692 (1971).CrossRefGoogle Scholar
  3. 3.
    J. D. Neill, Effect of “Stress” on serum prolactin and luteinizing hormone levels during the estrus cycle of the rat, Endocrinol. 87: 1192 (1970).CrossRefGoogle Scholar
  4. 4.
    L. Grant, P. Hopkinson, G. Jennings, and F. A. Jennre, “Period of adjustment of rats used for experimental studies,” Nature, (London) 232: 135 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    H. Mikolajczyk, Microwave-induced shifts of gonadotropic activity in anterior pituitary glands of rats, in: “Biologic Effects of Electromagnetic Waves,” Vol I, C.C. Johnson and M. L. Shore, eds., DHEW (FDA) 77–8010, Rockville (1977).Google Scholar
  6. 6.
    T. Nakayama, H. T. Hammel, J. D. Hardy, and J. S. Eisenman, Thermal stimulation of electrical activity of single units of the preoptic region, Am. J. Physiol. 204: 1122 (1963).Google Scholar
  7. 7.
    M. A. Baker and L. W. Chapman, Rapid brain cooling in exercising dogs, Science, 195: 781 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    S. Baranski and P. Czerski, “Biological Effects of Microwaves,” Dowden, Hutchinson and Ross, Stroudsberg (1967).Google Scholar
  9. 9.
    S. F. Cleary, Biological effects of microwaves and radiofrequency radiation, in: “CRC Critical Reviews in Environmental Control”, C.-traub, ed., Chemical Rubber Company, New York (1977).Google Scholar
  10. 10.
    S. T. Lu, W. G. Lotz, and S. M. Michaelson, Advances in microwave-induced neuroendocrine effects“: the concept of stress, Proc. IEEE 68: 73 (1980).CrossRefGoogle Scholar
  11. 11.
    S. M. Michaé on,—GT.—M. Houk, N. J. Lebda, S. T. Lu, and R. Magin, Biochemical and neuroendocrine aspects of exposure to microwaves, Ann. NY Acad. Sci. 247: 21 (1975).Google Scholar
  12. 12.
    S. M. Michaelson, Endocrine and biochemical effects, in: “Microwave and Radiofrequency Radiation”, World HeâTth Organization, Copenhagen, Regional Office for Europe, Section 7 (1977).Google Scholar
  13. 13.
    R. Guillet, W. G. Lotz, and S. M. Michaelson, Time-course of adrenal response in microwave-exposed rats, in: “Proceedings of the 1975 Annual Meeting of USNC7URSI”, University of Colorado, Boulder, National Academy of Sciences, p. 316, Washington, D.C. (1975)Google Scholar
  14. 14.
    R. Guillet and S. M. Michaelson, The effect of repeated microwave exposure on neonatal rats, Radio Sci. 12 6 (S): 125 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    W. M. Houk, S. M. Michaelson and D. E. Beischer, The effects of environmental temperature on thermoregulatory, serum lipid, carbohydrate, and growth hormone responses of rats exposed to microwaves, in: “Proceedings of the 1975 Annual Meeting of USNC/URSI”, University of Colorado, Boulder, CO, National Academy of Sciences, p. 309, Washington, D.C. (1975)Google Scholar
  16. 16.
    W. G. Lotz, Neuroendocrine function in Rhesus monkeys exposed to pulsed microwave radiation, in: “Abstracts of Scientific Papers, 1978 Symposium on Electromagnetic Fields in Biological Systems,” Ottawa, Canada (1978).Google Scholar
  17. 17.
    W. G. Lotz, Adrenocortical response in rats exposed to 1. 29 GHz microwaves, presented at Bioelectromapetics Symposium, Seattle, WA (1979).Google Scholar
  18. 18.
    W. G. Lotz, Thermal and endocrinological effects of microwave exposures on Rhesus monkeys, presented at Bioelectromagnetics Symposium, Seattle, WA (1979).Google Scholar
  19. 19.
    W. G. Lotz, S. M. Michaelson, and N. J. Lebda, Growth hormone levels of rats exposed to 2450-MHz (CW) microwaves, in: “Abstracts of Scientific Papers, 1977 International Symposium on the Biological Effects of Electromagnetic Waves,” p. 39, Airlie, VA (1977).Google Scholar
  20. 20.
    W. G. Lotz and S. M. Michaelson, Temperature and corticosterone relationship in microwave exposed rats, J. App1.Physiol. Respirat. Environ. Exercise Physiol. 44: 438 (1978).Google Scholar
  21. 21.
    W. G. Lotz and S. M. Michaelson, Effects of hypophysectomy and dexamethasone on the rat’s adrenal response to microwave irradiation, J. App1. Physiol. Respirat. Environ. Exercise Physiol. 47: 1284 (1979).Google Scholar
  22. 22.
    S. T. Lu, N. J. Lebda, and S. M. Michaelson, Effects of microwave radiation on the rat’s pituitary-thyroid axis, in: “Abstracts of Scientific Papers, 1977 International mymposium on the Biological Effects of Electromagnetic Waves, p. 37, Airlie, VA (1977).Google Scholar
  23. 23.
    S. T. Lu, N. J. Lebda, S. M. Michaelson, S. Pettit, and D. Rivera, Thermal and endocrinological effects of protracted irradiation of rats by 2450 MHz microwaves, Radio Sci. 12 6 (S): 147 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    S. T. Lu, N. J. Lebda, S. Pettit, and S. M. Michaelson, Modification of microwave biological end-points by increased resting metabolic heat load in rats, presented at Bioelectromagnetics Symposium, Seattle, WA (1979).Google Scholar
  25. 25.
    S. T. Lu, N. J. Lebda, S. Pettit, and S. M. Michaelson, Microwave-induced temperature, corticosterone and thyrotropin interrelationships. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 50: 399 (1981).Google Scholar
  26. 26.
    S. T. Lu, S. Pettit, S. M. Michaeison, Dual action of microwaves on serum corticosterone in rats, presented at Bioelectromagnetics Symposium, Seattle, WA (1979).Google Scholar
  27. 27.
    R. L. Magin, S. T. lu, and S. M. Michaelson, Stimulation of dog thyroid by local application of high intensity microwaves, Am. J. Physiol. 233: E363 (1977).Google Scholar
  28. 28.
    R. L. Magin, S.Ttü,and.M. Michaelson, Microwave heating effect on the dog thyroid, IEEE Trans. Biomed. Eng. 24: 522 (1977).CrossRefGoogle Scholar
  29. 29.
    H. Mikolajczyk, Hormone reactions and changes in endocrine glands under influence of microwaves, Medycyna Lotnicza 39: 39 (1972).Google Scholar
  30. 30.
    H. Mikolajczyk, Microwave irradiation and endocrine functions, in: “Biologic Effects and Health Hazards of Microwave aTiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw (1974).Google Scholar
  31. 31.
    W. C. Milroy and S. M. Michaelson, Thyroid pathophysiology of microwave radiation, Aerospace Med. 43: 1126 (1972).Google Scholar
  32. 32.
    L. N. Parker, Thyroid suppression andarenomedullary activation by low-intensity microwave radiation, Amer. J. Physiol. 224: 1388 (1973).Google Scholar
  33. 33.
    W. D. Travers and R. J. Vetter, Low intensity microwave effects on the synthesis of thyroid hormones and serum proteins, in: “Proc. of the 1976 Annual Meeting of USNC/URSI,1p. 91, University of Massachusetts, Amherst (1976)Google Scholar
  34. 34.
    R. J. Vetter, Neuroendocrine response to microwave irradiation, Proc. Nat. Electron Conf. 30: 237 (1975).Google Scholar
  35. 35.
    I. R. Petrov and 77.Sÿngayevs ayaya,Endocrine glands, in: “Influence of Microwave Radiation on the Organism of Taman and Animals,” I. R. Petrov, ed., Meditsina Press, Leningrad, (1970).Google Scholar
  36. 36.
    K. Kirchev, Some experimental data on the effects of an UHF electric field on the adrenals, in: “Problems of Physiotherapy and Health Reports, Moscow (1959).Google Scholar
  37. 37.
    Yu. D. Dumansky, A.M. Serdyuk, C.I. Litvinova, L.A. Tomashevskaya, and V.M. Popovich, Experimental research on the biological effects of 12-centimeter low-intensity waves, in: “Health in Inhabited Localities,” ed. II Kiev, (1972).Google Scholar
  38. 38.
    E. Schliephake, Endocrine influence on bleeding and coagulation time, Zbl. Chir. 85: 1063 (1960).Google Scholar
  39. 39.
    F. L. Leytes and L. A. Skurikhina, The effect of microwaves on the hormonal activity of the adrenal cortex, Byull. Eks. Biol. i Med. 52: 47 (1961).Google Scholar
  40. 40.
    A. N. Bereznitskaya, the effect of 10-centimeter and ultrashort waves on the reproductive function of female mice, Gig. Tr. Prof. Zabol. No. 9: 33 (1968).Google Scholar
  41. 41.
    M. S. Tolgskay— and`.Y.ordon— Changes in the neurosecretory function of the hypothalamus and the neuro-pituitary body during chronic irradiation with centimeter waves of low intensity, in: “The Biological Effects of Radio-Frequency Fields,”—Works of the Laboratory of Radio-frequency Electromagnetic Fields, Institute of Work Hygiene and Occupational Diseases, AMN SSSR, No. 3, 87 (1964).Google Scholar
  42. 42.
    J. Lenko, A. Dolatowski, L. Gruszecki, S. Klajman, and L. Januszkiewicz, Effect of 10-cm radar waves on the level of 17-ketosteroids and 17-hydroxycorticosteroids in the urine of rabbits, Przeglad Lekarski 22: 296 (1966).Google Scholar
  43. 43.
    S. M. Michaelson, R. A. E. Thomson, and J. W. Howland, “Biologic Effects of Microwave Exposure,” Griffiss Air Force Base, Rome Air Development Ctr., Rome, New York (1967).Google Scholar
  44. 44.
    Yu. D Dumansky and M. G. Shandala, The biological action and hygienic significance of electromagnetic fields of superhigh and ultrahigh frequencies in densely populated areas, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw (1974)Google Scholar
  45. 45.
    A. A. Novitskii, B. F. Murashov, P. E. Krasnobaev, and N. F. Markozova, The functional condition of the system hypothalamus-hypophysis-adrenal cortex as a criterium in establishing the permissible levels of superhigh frequency electromagnetic emissions, Voen. Med. Zh. 8: 53 (1977).Google Scholar
  46. 46.
    H. Selye, The general adaptation sync rôme and the diseases of adaptation, J. Clin. Endocrinol. 6: 117 (1946).CrossRefGoogle Scholar
  47. 47.
    S. Baranski, HistoTgiical and histochemical effect of microwave irradiation on the central nervous system of rabbits and guinea pigs, Amer. J. Phys. Med. 51: 182 (1972).Google Scholar
  48. 48.
    S. M. Michaelson, R. A. E. Tin, and J. W. Howland, Physiologic aspects of microwave irradiation of mammals, Amer. J. Physiol. 201: 351 (1961).Google Scholar
  49. 49.
    K.J. Collins and J. W. Weiner, Endocrinological aspects of exposure to high environmental temperatures, Physiol. Rev. 48: 785 (1968).Google Scholar
  50. 50.
    M. I. Smirnova and M. N. Sadchikova, Determination of the functional activity of the thyroid gland by means of radioactive iodine in workers with UHF generators, in: “The Biological Action of Ultrahigh Frequencies,” A. A. Letavet and Z. V. Gordon, eds., Moscow (1960).Google Scholar
  51. 51.
    N. A. D’Yachenko, Changes in thyroid function with chronic exposure to microwave radiation, Gig. Tr. Prof. Zabol. 14: 51 (1970).Google Scholar
  52. 52.
    R. Denisiewicz, E. Dziuk, and M. Siekierzynski, Evaluation of thyroid function in persons occupationally exposed to microwave radiation, Pol. Arch. Med. Wewnetrznej 45: 19 (1970).Google Scholar
  53. 53.
    J. B. Martin, Neural regulation of growth hormone secretion, N. Engl. J. Med. 288: 1384 (1973).CrossRefGoogle Scholar
  54. 54.
    G. Fr Brown änd—Reichlin, Psychologic and neural regulation of growth hormone secretion, Psychosom. Med. 34: 45 (1972).Google Scholar
  55. 55.
    A. V. Schally, A. Akimura, and A. J. Kastin, Hypothalamic regulatory hormones, Science 179: 341 (1973).ADSCrossRefGoogle Scholar
  56. 56.
    R. D. Phillips, E. L. Hunt, R. D. Castro, and N. W. King, Thermoregulatory metabolic and cardiovascular response of rats to microwaves. J. Appl. Physiol. 38: 630 (1975).Google Scholar
  57. 57.
    H. S. Ho and W. P. Edward, Oxygen-consumption rate of mice under differing dose rates of microwave radiation, Radio Sci. 126 (S): 131 (1977).ADSCrossRefGoogle Scholar
  58. 58.
    O.P. Gandhi, Conditions of strongest electromagnetic power deposition in man and animals, IEEE Trans. MTT-23: 1021 (1975).CrossRefGoogle Scholar
  59. 59.
    J. deLorge, Disruption of behavior in mammals of three different sizes exposed to microwaves: extrapolation to larger mammals, in: “Symposium on Electromagnetic Fields in Biological Systems,” S.S. Stuchly, ed., Int. Microwave, Power Institute, Alberta, Canada (1979).Google Scholar
  60. 60.
    K. Brown-Grant, C. Von Euler, G. W. Harris, and S. Reichlin, The measurement and experimental modification of thyroid activity in the rabbit, J. Physiol. 126: 1 (1954).Google Scholar
  61. 61.
    E. W. Dempsy and E. B. Astwood, ermination of the rate of thyroid hormone secretion at various environmental temperatures, Endocrinol. 32: 509 (1943).CrossRefGoogle Scholar
  62. 62.
    H. D. Johnson, M. W. Ward, and H. H. Kibler, Heat and aging effects on thyroid function of male rats, J. Appl. Physiol. 21: 689 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  1. 1.Department of Radiation Biology and BiophysicsUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations