Skip to main content

Biological Effects of Low Energy Electromagnetic Fields on the Central Nervous System

  • Chapter
Biological Effects and Dosimetry of Nonionizing Radiation

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 49))

Abstract

There has been extensive speculation about the possibility of enhanced sensitivities of central nervous tissue to environmental electromagnetic fields. Brain tissue possesses its own well known intrinsic oscillating field, the electroencephalogram (EEG). The functional significance of this internal field has been a matter of conjecture. Based on classical membrane electrophysiology, the majority of opinion has most frequently dismissed it as merely “the noise of the brain’s motor.” Evidence that this may not be an accurate evaluation has come from a variety of studies of effects of imposed oscillating electromagnetic fields which induce weak extracellular electrochemical oscillations in the fluid surrounding brain cells, and which mimic in varying degrees components of the natural electrochemical oscillations of the EEG in the same domain of brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W.R., 1975, Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields, in: “Functional Linkage in Biomolecular Systems”, F.O. Schmitt, D.M. Schneider and D.M. Crothers, eds. Raven, New York. p. 325–342.

    Google Scholar 

  • Adey, W.R., 1979, Models of membranes of cerebral cells as substrates for information storage, BioSystems, 8: 163–178.

    Article  Google Scholar 

  • Adey, W.R., 1979, Experiment and theory in long-range interactions of electromagnetic fields at brain cell surfaces, in: “Magnetic Field Effects on Biological Systems”, T. Tenforde, ed. Plenum, New York. p. 57–78.

    Chapter  Google Scholar 

  • Adey, W.R., 1981a, Tissue interactions with nonionizing electromagnetic fields, Physiol. Rev. 61: 435–514.

    Google Scholar 

  • Adey, W.R. 1981b, Ionic nonequilibrium phenomena in tissue interactions with electromagnetic fields, in: “Biological Effects of Nonionizing Radiation”, K.H. Illinger, ed. American Chemical Society Symposium Series, No. 157. American Chemical Society, Washington, D.C. p. 271–297.

    Chapter  Google Scholar 

  • Adey, W.R., and Bawin, S.M., 1980, Nonequilibrium processes in binding and release of brain calcium by low-level electromagnetic fields, in: “Bioelectrochemistry: Ions, Surfaces, Membranes”, M. Blank, ed. American Chemical Society, Advances in Chemistry Series, No. 188. American Chemical Society, Washington, D.C. p. 361–378.

    Chapter  Google Scholar 

  • Adey, W.R., Bawin, S.M., and Lawrence, A.F., 1981, Nonlinear wave mechanismss in tissue-electromagnetic field interactions. Bioelectromagnetics

    Google Scholar 

  • Barnes, F.S., and Hu, C.L.J., 1977, Model for some nonthermal effects of radio and microwave fields on biological membranes, IEEE Trans. Microwave Theory Tech. 25: 742–746.

    Article  MathSciNet  ADS  Google Scholar 

  • Bass, L., and Moore, W.J., 1968, A model of nervous excitation based on the Wien Dissociation effect, in: “Structural Chemistry and Molecular Biology,” A. Rich and C.M. Davidson, eds. Freeman, San Francisco. p. 356–368.

    Google Scholar 

  • Bawin, S.M., and Adey, W.R., 1976, Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency, Proc. Natl. Acad. Sci., USA, 73: 1999–2003.

    Article  ADS  Google Scholar 

  • Bawin, S.M., Ade W, and Sabbot, I.M., 1978, Ionic factors in release of ~..Ca2 from chick cerebral tissue by electromagnetic fields, Proc. Natl. Acad. Sci., USA, 75: 6314–6318

    Article  ADS  Google Scholar 

  • Bawin, S.M., Gavalas-Medici, R., and Adey, W.R., 1973, Effects of modulated very high frequency fields on specific brain rhythms in cats, Brain Res., 58: 365–384.

    Article  Google Scholar 

  • Bawin, S.M., Kaczmarek, L.K., and Adey, W.R., 1975, Effects of modulated VHF fields on the central nervous system, Ann. NY Acad. Sci., 247: 74–81.

    Article  ADS  Google Scholar 

  • Bawin, S.M., Sheppard, A.R., and Adey, W.R., 1978, Possible mechanisms of weak electromagnetic field coupling in brain tissue, Bioelectrochem. Bioenergetics, 5: 67–76.

    Article  Google Scholar 

  • Benson, A.A., 1966, On the orientation of lipids in chloroplast and cell membranes, J. Amer. Oil Chem. Soc., 43: 265–270.

    Article  MathSciNet  Google Scholar 

  • Bhaumik, D., Bhaumik, K., and Dutta-Roy, B., 1976, On the possibility of Bose condensation in the excitation of coherent modes in biological systems, Phys. Lett., 56A: 145–148.

    ADS  Google Scholar 

  • Bullough, R.K., 1981, Bose-Fermi equivalence and soliton theory in solid-state physics, Nature, 292: 411–412.

    Article  ADS  Google Scholar 

  • Davydov, A.S., 1977, Solitons as energy carriers in biological systems, Studia Biophysica, 62: 1–8.

    Google Scholar 

  • Davydov, A.S., 1979, Solitons in molecular systems, Physica Scripta, 20: 387–394.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Edelman, G.M., 1976, Surface modulation in cell recognition and cell growth, Science, 192: 218–226.

    Article  ADS  Google Scholar 

  • Einolf, C.W., and Carstensen, E.L., 1971, Low-frequency dielectric dispersion in suspensions of ion-exchange resins. J. Phys. Chem., 75: 1091–1099.

    Article  Google Scholar 

  • Fröhlich, H., 1968, Long-range coherence and energy storage in biological systems, Int. J. Quant. Chem., 2: 641–649.

    Article  ADS  Google Scholar 

  • Fröhlich, H., 1975, The extraordinary dielectric properties of biological materials and the action of enzymes. Proc. Nat. Acad. Sci., USA, 72: 4211–4215.

    Article  ADS  Google Scholar 

  • Kaczmarek, L.K, 1976, Frequency sensitive biochemical reactions, Biophys. Chem., 4: 249–252.

    Article  Google Scholar 

  • Kaczmarek, L.K., and Adey, W.R., 1974, Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Res., 66: 537–540.

    Article  Google Scholar 

  • Kalmijn, A.J., 1980, Electromagnetic guidance systems in fishes, in: “Magnetic Field Effects on Biological Systems”, T. Tenforde, ed. Plenum, New York.

    Google Scholar 

  • Kretsinger, R., ed., 1981, Mechanisms of selective signaling by calcium, Neurosci. Res. Program Bull., 19: 213–332.

    Google Scholar 

  • Lawrence, A.F., and Adey, W.R., 1981, Nonlinear wave mechanisms in tissue-electromagnetic field interactions. Neurol. Res.

    Google Scholar 

  • Lin-Liu, S., and Adey, W.R., 1981, Low-frequency amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics

    Google Scholar 

  • Matus, A., de Petris, S., and Raff, M.C., 1973, Mobility of concanavalin A receptors in myelin and synaptic membranes, Nature New Biology 244: 278–279.

    Google Scholar 

  • Neumann, E., and Katchalsky, A., 1972, Long-lived conformation changes induced by electric impulses in biopolymers, Proc. Natl. Acad. Sci., USA, 69: 993–997.

    Article  ADS  Google Scholar 

  • Neumann, E., Nachmansohn, D., and Datchalsky, A., 1973, An attempt at an integral interpretation of nerve excitability, Proc. Natl. Acad. Sci.,USA, 70: 727–731.

    Article  ADS  Google Scholar 

  • Pickard, W.F., and Rosenbaum, J.F., 1978, Biological effects of microwaves at the membrane level: two possible athermal electrophysiological mechanisms and a proposed experimental test, Math. Biosci., 39: 239–253.

    Article  Google Scholar 

  • Rabichev, L.Y., Ilynna, T.G., Ilynk, V.A., and Raku, P.V., 1976, Elektroson y ritmoteflperticheskii son, Korsakov J. Neuropath. Psychiat., 3: 443–446 (Russian).

    Google Scholar 

  • Redburn, D.A., Shelton, D., Cotman, C.W., 1976 Calcium-dependent release of exogenously loaded y-amino-[U-14C]butyrate from synaptosomes; time course of stimulation by potassium, veratridine, and the calcium ionophore, A23187, J. Neurochem., 26: 297–303.

    Article  Google Scholar 

  • Schwarz, G., 1967, A basic approach to a general theory for cooperative intramolecular conformation changes of linear biopolymers, Biopolymers, 5: 321–324.

    Article  Google Scholar 

  • Schwarz, G., 1975, Sharpness and kinetics of cooperative transitions, in: “Functional Linkage in Biomolecular Systems”, F.O. Schmitt, D.M. Schneider, and D.M. Crothers, eds. Raven Press, New York. p. 32–35.

    Google Scholar 

  • Schwarz, G., and Balthasar, W., 1970, Cooperative binding of linear biopolymers. 3. Thermodynamic and Kinetic analysis of the acridine orange-poly-L-glutamic acid system, Eur. J. Biochem., 12: 461–467.

    Article  Google Scholar 

  • Servantie, B., Servantie, A.M., and Etienne, J., 1975, Synchronization of cortical neurons by a pulsed microwave field as evidenced by spectral analysis of electrocorticograms from the white rat, Ann. NY Acad. Sci., 247: 82–86.

    Article  ADS  Google Scholar 

  • Shepherd, G.M., 1979, “The Synaptic Organization of the Brain”, 2nd ed. Oxford University Press, New York, 436 pp.

    Google Scholar 

  • Sheppard, A.R., and Adey, W.R., 1979, The role of cell surface polarization in biological effects of extremely low frequency fields, U.S. Department of Energy Symposium Series, Nd. 50, “Biological Effects of Extremely Low Frequency Electromagnetic Fields”, Washington, D.C. pp. 147–158.

    Google Scholar 

  • Singer, S.J., and Nicolson, G.L., 1972, The fluid mosaic model of the sturcture of the cell membrane, Science, 175: 720–731.

    Article  ADS  Google Scholar 

  • Takashima, S., Onoral, B., and Schwan, H.P., 1979, Effects of modulated RF energy on the EEG of mammalian brains, Radiat. Environ. Biophys., 16: 15–27.

    Article  Google Scholar 

  • Taylor, L.S., 1981, Athermal millimeter/microwave effects, Science

    Google Scholar 

  • Terenius, L., 1973, Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex, Acta Pharmacol. Toxicol., 32: 317–320.

    Article  Google Scholar 

  • Yahara, I., and Edelman, G.M., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci., USA, 69: 608–612.

    Article  ADS  Google Scholar 

  • Young, J.Z., 1951, “Doubt and Certainty in Science”, Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Adey, W.R. (1983). Biological Effects of Low Energy Electromagnetic Fields on the Central Nervous System. In: Grandolfo, M., Michaelson, S.M., Rindi, A. (eds) Biological Effects and Dosimetry of Nonionizing Radiation. NATO Advanced Study Institutes Series, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4253-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4253-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4255-7

  • Online ISBN: 978-1-4684-4253-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics