Advertisement

Biological Effects and Health Hazards of RF and MW Energy: Fundamentals and Overall Phenomenology

  • Sol M. Michaelson
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)

Abstract

Extensive investigations into microwave bioeffects during the last quarter century have shown that for frequencies between 200 and 24,500 MHz, exposure to a power density of 100 mW/cm2 for several minutes or hours can result in pathophysiologic manifestations of a thermal nature in laboratory animals. Such effects may or may not be characterized by a measurable temperature rise, which is a function of thermoregulatory processes and active adaptation of the animal. The end result is either reversible or irreversible change, depending on the irradiation conditions and the physiologic state of the animal. At lower power densities, clear evidence of pathologic changes or physiologic alteration is nonexistent or equivocal. A great deal of discussion, nevertheless, has taken place on the relative importance of thermal or nonthermal effects of radiofrequency (RF) and microwave (MW) radiation.

Keywords

Power Density Microwave Radiation Health Hazard Microwave Energy Microwave Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Schwan, Temperature dependence of the dielectric constant of blood at low frequencies, Z. Naturforschung 3b:361 (1948).Google Scholar
  2. 2.
    H. P. Schwan, Electrical properties of tissue and cell suspensions, Adv. Biol. Med. Phys. 5:147 (1954).Google Scholar
  3. 3.
    H. P. Schwan, Electrical properties of tissues and cell suspensions, in: “Advances in Biological and Medical Physics,” J. H. Lawrence and C.A. Tobias, eds., Academic Press, New York (1957).Google Scholar
  4. 4.
    H. P. Schwan and G. M. Piersol, The absorption of electromagnetic energy in body tissues, a review and critical analysis: Part I: Biophysical aspects, Am. J. Phys. Med. 33:371 (1954).Google Scholar
  5. 5.
    H. P. Schwan and G. M. Piersol, The absorption of electromagnetic energy in body tissues, a review and critical analysis: Part II: Physiological and clinical aspects, Am. J. Phys. Med. 34:425 (1955).Google Scholar
  6. 6.
    H. F. Cook, The dielectric behavior of some types of human tissues at microwave frequencies, Brit. J. Appl.Phys. 12:295 (1951).ADSCrossRefGoogle Scholar
  7. 7.
    J. F. Herrick, B. G. Jelatis and G. M. Lee, Dielectric properties of tissues important in microwave diathermy, Fed. Proc. 9:60 (1950).Google Scholar
  8. 8.
    C. C. Johnson and A. W. Guy, Nonionizing electromagnetic wave effects in biological materials and systems, Proc. IEEE 60:692 (1972).CrossRefGoogle Scholar
  9. 9.
    H. Schwan and K. R. Foster, RF-field interactions with biological systems: electrical properties and biophysical mechanisms, Proc. IEEE 68:104 (1980).CrossRefGoogle Scholar
  10. 10.
    M. A. Stuchly and S. S. Stuciÿ, Dielectric properties of biological substances - tabulated, J. Microwave Power 15:19 (1980).Google Scholar
  11. 11.
    E. F. Adolph, Look at physiological integration, Amer. J. Physiol. 237:R255 (1979).Google Scholar
  12. 12.
    J. D. Hardy, Thermal comfort: skin temperature and physiological thermoregulation, in: “Physiological and Behavioral Temperature Regulation J. D. Hardy, A. P. Gagge and J. A. J. Stolwijk, eds., C. C. Thomas, Springfield (1980).Google Scholar
  13. 13.
    R. Thauer, Circulatory adjustments to climatic requirements, in: “Handbook of Physiology,” Section 2, Circulation IIi; W. F. Hamilton, ed., Am. Physiol. Society, Washington, DC (1965).Google Scholar
  14. 14.
    S. M. Michaelson, Comparative biology in assessment of electromagnetic bioeffects, in: “Biomedical Aspects of Nonionizing Radiation,” W. C. Milroy, ed., U.S. Naval Weapons Lab Tech. Report TR-3110, Dahlgren, VA (1974).Google Scholar
  15. 15.
    S. M. Michaelson, Thermal effects of single and repeated exposures to microwaves - a review, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw (1974).Google Scholar
  16. 16.
    S. M. Michaelson and H. P. Schwan, Comparative aspects of radiofrequency and microwave biomedical research, in: “Digest of Tech Papers IEEE G-MTT,” S. W. Maley, e37, Internat. Symp. (1973).Google Scholar
  17. 17.
    J. H. Heller, Cellular effects of microwave radiation, in: “Biological Effects and Health Implications of Microwave Radiation, Symposium Proceedings,” S. F. Cleary, ed., U.S. Department of Health, Education and Welfare, Public Health Service BRH/DBE 70–2 (1970).Google Scholar
  18. 18.
    D. E. Janes, W. M. Leach, W. A. Mills, R. T. Moore and M. L. Shore, Effects of 2450 MHz microwaves on protein synthesis and on chromosomes in Chinese hamsters, Nonioniz. Radiat. 1:125 (1969).Google Scholar
  19. 19.
    S. Baranski and P. Czerski, “Biological Effects of Microwaves,” Dowden, Hutchinson and Ross, Stroudsburg, PA (1976).Google Scholar
  20. 20.
    S. Baranski, H. Debiec, K. Kwarecki and T. Mezykowski, Influence of microwaves on genetical processes of Aspergillus nidulans, J. Microwave Power 11:146 (1976).Google Scholar
  21. 21.
    C. F. Blackman, M. C. Suries and S. G. Beenâne, The effects of microwave exposure on bacteria mutation reduction, Sip. Biol. Eff. of E.M. Waves. U.S. Department of H -th, E ucat of n ând W& are Publ. (FDA) 77–8010, 1:406 (1976).Google Scholar
  22. 22.
    M. M. Varma and E. A. Traboulay, Jr., Evolution of dominant lethal test and DNA studies in measuring mutagenicity caused by non-ionizing radiation, in: “Biological Effects of Electromagnetic Waves,” T. C. Johnson and M. L. Shore, eds., Vol I, U.S. Department of Health, Education and Welfare, Food and Drug Adminstration, Publication (FDA) 77–8010, Rockville, MD (1976).Google Scholar
  23. 23.
    T. S. Ely, D. Goldman, J. Z. Hearon, R. B. Williams and H. M. Carpenter, Heating characteristics of laboratory animals exposed to ten centimeter microwaves, Bethesda, MD, U.S. Nay. Med. Res. Inst. (Res. Rep. Proj. NM 001–056.13.092), IEEE Trans. Biomed. Eng. 11:123 (1964).CrossRefGoogle Scholar
  24. 24.
    W. G. Lotz and S. M.-Fr c haelson,-Temperature and corticosterone relationships in microwave exposed rats, J. A pp1. Ph siol. Respirat. Environ. Exercise Physiol. 14:438 (1978)Google Scholar
  25. 25.
    W. G. Lotz and S. M. Michaelson, Effects of hypophysectomy and dexamethasone on rat adrenal response to microwaves, J. Appppi. Ph siol. Respirat. Environ. Exercise Physiol. 17:1284–1879).Google Scholar
  26. 26.
    S. T. Lu, N. Lebda, S. Pettit, D. Rivera and S. M. Michaelson, Thermal and endocrinological effects of protracted irradiation of rats by 2450 MHz microwaves, Radio Science 12(6S):147 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    S. T. Lu, N. Lebda, S. Pettit and S. M. Michaelson, Delineating acute neuroendocrine responses in microwave exposed rats, J. App1. Ph siol. Respirat. Environ. Exercise Physiol. 48:927 (1980).Google Scholar
  28. 28.
    S. T. Lu, N. Lotz and S. M. Michaelson, Advances in microwave-induced neuroendocrine effects: the concept of stress, Proc. IEEE 68:73 (1980).CrossRefGoogle Scholar
  29. 29.
    R. L. Magin, S. T. Lu and S. M. Michaelson, Microwave heating effect on the dog thyroid gland. IEEE Trans. BME 24:522 (1977).CrossRefGoogle Scholar
  30. 30.
    R. L. Magin, S. T. Lu and S. M. Michaelson, Stimulation of dog thyroid by local application of high intensity microwaves, Am. J. Physiol. 233:E363 (1977).Google Scholar
  31. 31.
    H. Mikolajczyk, llicrowave irradiation and endocrine functions, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw (1974).Google Scholar
  32. 32.
    A. A. Novitskii, B. F. Murashov, P. E. Krasnobaev and N. F. Markozova, The functional condition of the system hypothalamus-hypophysis-adrenal cortex as a criterium in establishing the permissible levels of superhigh frequency elecromagnetic emissions, Voen. Med. Zh. 8:53 (1977).Google Scholar
  33. 33.
    I. R. Petrov and V. A. Syngayevskaya, Endocrine glands, in: “Influence of Microwave Radiation on the Organism of Win and Animals,” I. R. Petrov, ed., Meditsina Press, Leningrad (1970).Google Scholar
  34. 34.
    W. Wiktor-Jedrezejczak, A. Ahmed, K. W. Sell, P. Czerski and W. M. Leach, Microwaves induce an increase in the frequency of complement receptor-bearing lymphoid spleen cells in mice, J. Immunol. 118:1499 (1977).Google Scholar
  35. 35.
    R. P. Liburdy, Radiofrequency radiation alters the immune system: modulation of T- and B-lymphocyte levels and cell-mediated immunocompetence by hyperthermic radiation, Radiat. Res. 77:34 (1979).CrossRefGoogle Scholar
  36. 36.
    N. J. Roberts, and H. T. Steigbigel, Hyperthermia and human leukocyte functions: effects on responses of lymphocytes to mitogen, antigen and bactericidal capacity of monocytes and neutrophils, Infection and Immunity 18:673 (1977).Google Scholar
  37. 37.
    Z. V. Gordon, Y. A. Lobanova and M. S. Tolgskaya, Some data on the effect of centimeter waves (experimental studies), Gig. Sanit. (USSR) 12:16 (1955).Google Scholar
  38. 38.
    J. Bligh, Physiological response to heat, in: “Fundamental and Applied Aspects of Non-ionizing Radiâtion,” S. M. Michaelson, et al., eds., Plenum, New York (1975).Google Scholar
  39. 39.
    S. M. Michaelson, Central nervous system responses to microwave-induced heating. Neurosci. Res. Program Bull. 15:98–100 (1977).Google Scholar
  40. 40.
    W. R. Adey, Tissue interactions with nonionizing electromagnetic fields. Physiol Rev. 61:435 (1981).Google Scholar
  41. 41.
    S. M. Michaelson, R. Guillet, G. Lotz, S. T. Lu and R. L. Magin, Neuroendocrine responses in the rat and dog exposed to 2450 MHz (CW) microwaves, in: “Biological Effects and Measurement of Radiofrequency/Microwaves,” D. G. Hazzard, ed., Bureau of Radiological Health, HEW Publication (FDA) 77–8026, Rockville, MD p. 263 (1977).Google Scholar
  42. 42.
    E. S. Ismailov and S. M. Zubkova, Physicochemical mechanisms of the biological activity of microwaves (Russian), Biologicheski a Nauki, 6:5 (Translation, JPRS 70101, Arlington) (1977Google Scholar
  43. 43.
    A. S. Presman, Elektromagnitzye Polya i Zhivaya Prioda“ (Electomagnetic Fields and Animate Nature), Science Publishers, Moscow (1968).Google Scholar
  44. 44.
    A. S. Presman, “Elektromagnitzye Polya v Biosfere” (Electomagnetic Fields in the Biosphere), Znaniye, Moscow (1971).Google Scholar
  45. 45.
    K. J. Oscar and T. D. Hawkins, Microwave alterations of the blood-brain barrier system of rats, Brain Res. 126:281 (1977).CrossRefGoogle Scholar
  46. 46.
    J. H. Merritt, A. F. Chamness and S. J. Allen, Studies on blood-brain barrier permeability after microwave irradiation, Radiat. Environ. Biophys. 15:367 (1978).CrossRefGoogle Scholar
  47. 47.
    E. Preston, E. J. Vivâsour and H. M. Assenheim, Permeability of the blood brain barrier to mannitol in the rat following 2450 MHz microwave irradiation, Brain Res. 174:109 (1979).Google Scholar
  48. 48.
    H. N. Kritikos and H. P. Schwan, The distribution of heating potential inside lossy spheres, Inst. Electrical Electronics Eng., Trans. Biomed. Eng. 2E4 7 (1975).Google Scholar
  49. 49.
    C. K. Chou and A. Wußÿ, Quantitation of microwave biological effects, in: “Biological Effects and Measurements of Radi1requency/Microwaves,” D. G. Hazzard, ed., Bureau of Radiological Health, HEW Publication (FDA), Rockville, MD (1977).Google Scholar
  50. 50.
    A. W. Guy, Biophysical characteristics of electromagnetic fields, problems of dosimetry and dosimetric techniques, Neurosci. Res. Program Bull. 15:81–98 (1977).Google Scholar
  51. 51.
    H. N. Kritikos and H. P. Sciiwàn, Potential temperature rise induced by electromagnetic fields in brain tissue, Inst. Electrical Electronics Eng. Trans. Biomed. 26:23 (1972).Google Scholar
  52. 52.
    H. N. Kritikos and H. P. Schwan, Hot spots generated in conducting spheres by electromagnetic waves and biological implications, Inst. Electrical Electronics Eng. Trans. Biomed. En 19:53 (1972).CrossRefGoogle Scholar
  53. 53.
    H.ritT oos and-1H. P7-Schwan, Formation of hot spots in multilayer spheres, Inst. Electrical Electronics La., Trans. Biomed. Eng. 23:168 (1976).Google Scholar
  54. 54.
    M. BBaker and L. W. Chapman, Rapid brain cooling in exercising dogs, Science 195:781 (1977).ADSCrossRefGoogle Scholar
  55. 55.
    J. de Lorge, Disruption behavior in mammals of three different sizes exposed to microwaves: extrapolation to larger mammals, in: “1978 Symposium on Electromagnetic Fields in Biological Systems,” S. S. Stuchly, ed., Ottawa (1978).Google Scholar
  56. 56.
    J. A. J. Stolwijk, Responses to the thermal environment, Fed. Proc. 36:1655 (1977).Google Scholar
  57. 57.
    S. Stern, T. Margolin, B. Weiss, S. T. Lu and S. M. Michaelson, Microwaves: effect on thermoregulatory behavior in rats, Science 206:1198 (1979).ADSCrossRefGoogle Scholar
  58. 58.
    E. R. Adair and B. W. Adams, Microwaves modify thermoregulatory behavior in squirrel monkeys, Bioelectromagnetics 1:1 (1980).CrossRefGoogle Scholar
  59. 59.
    Z. V. Gordon, “BioTogical Effect of Microwaves in Occupational Hygiene,” Izd. Med, Leningrad (1966).Google Scholar
  60. 60.
    M. N. Sadchikova and A. A. Orlova, Clinical picture of the chronic effects of electromagnetic microwaves, Ind. Occupat. Dis. (USSR) 2:16 (1958).Google Scholar
  61. 61.
    Y. A. Osipov, Occupational Hygiene and the Effect of Radio-frequency Electromagnetic Fields on Workers,“ Izd. Meditsina Press, Leningrad (1965).Google Scholar
  62. 62.
    Z. Edelweijn, R.L. Elder, E. Klimkova-Deutschova and B. Tengroth, Occupational exposure and public health aspects of microwave radiation, in: “Biological Effects and Health Hazards of Microwave eradiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw (1974).Google Scholar
  63. 63.
    N. V. Tyagin, “Change in the blood of animals subjected to a SHF-UHF field,” Voyenno-Medit. Akad. Kirov., 73:116, Leningrad (1957).Google Scholar
  64. 64.
    A. S. Hyde and J. J. Friedman, Some effects of acute and chronic microwave irradiation of mice, in: “Thermal Problems in Aerospace Medicine,” J. D. Hardy, ed., Unwin Ltd., Surrey (1968).Google Scholar
  65. 65.
    J. F. Spalding, R. W. Freyman and L. M. Holland, Effects of 800 MHz electromagnetic radiation on body weight, activity, hematopoiesis and life span in mice, Health Ph Physics 20:421 (1971).CrossRefGoogle Scholar
  66. 66.
    S. M. Micc aelson, R. A. E. Thomson and J. W. Howland, “Biologic Effects of Microwave Exposure.” RADC: ASTIA Doc. No. AD 824–242, Griffis AFB, also United States Senate, Ninetieth Congress, second session on S 2067, S 3211 and HR 10790, 1968: Radiation Control for Health and Safety Act of 1967, (1967).Google Scholar
  67. 67.
    S. M. Michaelson, R. A. E. Thomson, M. Y. el Tamami, H. S. Seth and J. W. Howland, Hematologic effects of microwave exposure, Aerospace Med. 35:824 (1964).Google Scholar
  68. 68.
    S. Baranski, Effect of c Fronic microwave irradiation on the blood forming system of guinea pigs and rabbits, Aeros ace Med. 42:1196 (1971).Google Scholar
  69. 69.
    P. Czerski, Microwave effects on the blood-forming system with particular references to the lymphocyte, in: “Biological Effects of Nonionizing Radiation,” F. E. Tyler, ed., Ann. NY Acad Sci. 247:232 (1975).Google Scholar
  70. 70.
    P. Czerski, E. Paprocka-Slonka, M. Siekiersynzki and A. Stolarska, Influence of microwave radiation on the hematopoietic system, in: “Biologic Effects and Health Hazards of Microwave Radiation,” P. Czerski, et al., eds., Polish Medical Publishers, Warsaw, (1974).Google Scholar
  71. 71.
    H. F. Cook, The pain threshold for microwave and infra-red radiations, J. Physiol. 118:1 (1952).Google Scholar
  72. 72.
    E. Hendler, J. D. Hardy and D. Murgatroyd, Skin heating and temperature sensation produced by infra-red and microwave irradiation,“ in: ”Temperature Measurement and Control in Science and Industry,“ J. D. Hardy, ed., Reinhold, New York (1963).Google Scholar
  73. 73.
    E. Hendler, Cutaneous receptor response to microwave radiation, in: “Thermal Problems in Aerospace Medicine,” J. D. Hardy, ed., Unwin Ltd., Surrey (1968).Google Scholar
  74. 74.
    C. D. Robinette, C. Silverman and S. Jablon, Effects upon health of occupational exposure to microwave radiation (Radar), Am. J. Epidemiol. 112:39 (1980).Google Scholar
  75. 75.
    A. K. Guskovi— ana Y: H. Kochanova, Some aspects of etiological diagnostics of occupational disease as related to the effects of microwave radiation, Gib. Truda i Prob. Zabol 3:14 (1975).Google Scholar
  76. 76.
    Pzersiawn M. Piotrowski, Proposals for specification of allowable levels of microwave radiation, Medycyna Lotnicza (Polish) 39:127 (1972).Google Scholar
  77. 77.
    National Research Council, Effects of Microwave Radiation on the Lens of the Eye, National Academy of Sciences, Washington, DC (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  1. 1.Department of Radiation Biology and BiophysicsUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations