Theory of Resonant Effects of RF and MW Energy

  • Friedemann Kaiser
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)


The absorption of non-ionizing electro-magnetic radiation is predominantly determined by the bulk dielectric properties (bulk complex permittivity ε(ω) and bulk attenuation function α(ω)) of the irradiated system. Since water represents a most important constituent of biological systems, microwaves, and particularly millimeter waves, are strongly absorbed in these systems.


Free Oscillation Stable Focus Large Amplitude Oscillation Steady State Amplitude Resonant Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Baransky and P. Czerski, “Biological Effects of Microwaves”, Dowden, Hutchinson and Ross, Stroudsbourg (1976)Google Scholar
  2. 2.
    H. P. Schwan, “Dielectric properties of brain tissue between 0.01 and 10 GHz”, Phys. Med. Biol. 24: 1177 (1979)CrossRefGoogle Scholar
  3. 3.
    E. H. Grant, “The role of water in MW absorption by biological material with particular reference to MW hazards”, Phys. Med. Biol. 24: 1168 (1979)CrossRefGoogle Scholar
  4. 4.
    N. D. Devyatkov, “Influences of mm-band electromagnetic radiation on biological objects”, Usp. Fiz. Nauk 110: 452 (1973)CrossRefGoogle Scholar
  5. 5.
    J. Bertaud, M. Dardalhon, N. Rebeyrotte and D. Averbeck, “Action d’un rayonnement électromagnetique â longueur d’onde millimétrique sur la croissance bactérienne”, C. R. Acad. Sci. 281D: 843 (1975)Google Scholar
  6. 6.
    W. Grundler and F. Keilmann, “Nonthermal effects of mm MW on yeast growth” Z. Naturforsch. 33c: 15 (1978)Google Scholar
  7. 7.
    F. Barnes, in: “Nonlinear Electromagnetics”, P. L. E. Uslenghi ed., Academic Press, New York (1980)Google Scholar
  8. 8.
    H. Fröhlich, “The Biological Effects of MW and Related Questions”, Advances in Electronics and Electron Physics, 53: 85–152 (1980)CrossRefGoogle Scholar
  9. 9.
    F. Kaiser, “Nonlinear Oscillations (Limit Cycles) in Physical and Biological Systems”, in: “Nonlinear Electromagnetics”, P.L.E. Uslenghi ed., Academic Press, New York (1980)Google Scholar
  10. 10.
    A.A. Andronov, A.A. Vitt and S.E. Khaikin, “Theory of Oscillators”, Pergamon Press, Oxford (1964)Google Scholar
  11. 11.
    M.W. Hirsch and S. Smale, “Differential Equations, Dynamical Systems, and Linear Algebra”, Academic Press, New York (1974)MATHGoogle Scholar
  12. 12.
    A.A. Andronov, L.A. Leontovich, I. I. Gordon and A.G. Maier, “Qualitative Theory of Second-order Dynamic Systems”, J. Wiley, New York (1980)Google Scholar
  13. 13.
    B. Van der Pol “On relaxation oscillations”, Phil. Mag. Ser. 7, 2: 978 (1926)Google Scholar
  14. 14.
    B. Van der Pol, “Forced oscillations in a circuit with nonlinear resistance”, Phil. Mag. Ser. 7, 13: 65 (1972)Google Scholar
  15. 15.
    S.M. Bawin and W.R. Adey eds., “Brain interactions with Weak Electric and Magnet Fields”, Neurosci. Res. Progr. Bull. 15: 1–107 (1977)Google Scholar
  16. 16.
    H. Fröhlich, in Ref. 15: 67–72Google Scholar
  17. 17.
    F. Kaiser, “Limit cycle model for brain waves”, Biol. Cybernet. 27: 155 (1977)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    F. Kaiser, “Coherent oscillations in biological systems”, Z. Naturforsch. 33a: 294 (1978)ADSGoogle Scholar
  19. F. Kaiser, “Coherent oscillations in biological systems”, Z. Naturforsch. 33a: 418 (1978)ADSGoogle Scholar
  20. 19.
    R. Weyer, “The circadian system of man”, Springer-Verlag, New York (1979)Google Scholar
  21. R. Weyer (private communication, 1981)Google Scholar
  22. 20.
    F. Kaiser, “Coherent modes in Biological Systems, perturbation by external fields”, in: “Biological Effects of Nonionizing Radiation”, K. Illinger ed., ACS Symp. Series, Washington (in print 1981 )Google Scholar
  23. 21.
    G. Nicolis and I. Prigogine, “Self-organization in nonequilibrium systems”, I. Wiley, New York (1977)MATHGoogle Scholar
  24. 22.
    H. Haken, “Synergetics, an Introduction”, Springer-Verlag, Berlin (1978).MATHGoogle Scholar
  25. 23.
    F. Kaiser, Workshop on the “Mechanism of microwave biological effects”, University of Maryland, May 1979 (unpublished) Summary in: workshop report, L.S. Taylor and A.Y. Chenng eds., University of Maryland (1980).Google Scholar
  26. 24.
    W.R. Adey, “Models of membranes of cerebral cells as substrates for information storage”, Bio. Systems 8: 163 (1977)CrossRefGoogle Scholar
  27. 25.
    S.M. Bawin and W.R. Adey in Ref. 15Google Scholar
  28. 26.
    I.T. Grodsky, “Neuronal membrane: A physical synthesis”, Math. Biosci. 20: 191 (1976)CrossRefGoogle Scholar
  29. 27.
    H. Fröhlich, “Long range coherence and energy storage in biological systems”, Int. J. Quant. Chem. 2: 641 (1968)ADSCrossRefGoogle Scholar
  30. 28.
    F. Kaiser, “Boltzmann equation approach to Fröhlich’s vibrational model”, Z. Naturforsch. 34a: 134 (1977)ADSGoogle Scholar
  31. 29.
    H. Fröhlich, in Ref. 15Google Scholar
  32. 30.
    K. Illinger, Workshop on the “Physical basis of electromagnetic interactions with biological systems”, University of Maryland, June (1977)Google Scholar
  33. 31.
    F. Kaiser, Symposium on the “Biological effects of electromagnetic waves”, Helsinki, Finland (1978) Radio Science (in print, 1980 ).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Friedemann Kaiser
    • 1
  1. 1.3. Institut für Theoretische PhysikUniversität StuttgartStuttgart - 80Germany

Personalised recommendations