Advertisement

The Inverse Potential Problem Applied to the Human Case

  • P. Colli Franzone
  • L. Guerri
  • B. Taccardi
  • C. Viganotti

Abstract

In this paper, we discuss the critical points that are encountered in extending a numerical procedure for the computation of epicard-ial from surface potential values to the human case.

Keywords

Transfer Matrix Regularization Method Human Case Smoothing Parameter Surface Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderssen, B., and Bloomfield, P., 1974, Numerical differentiation procedures for non-exact data, Numer. Math. 22:157CrossRefGoogle Scholar
  2. Colli Franzone, P., Guerri, L., Taccardi, B., and Viganotti, C., 1978, A regularization method for inverse electrocardiology applied to data from an isolated dog heart experiment, in: “Modern Electro-cardiology”, Ed. Z. Antaloczy, Amsterdam, Excerpta Medica, pp. 75Google Scholar
  3. Colli Franzone, P., Guerri, L., Taccardi, B., and Viganotti, C., 1979, The direct and inverse potential problems in electrocardiology. Numerical aspects of some regularization methods and application to data collected in isolated dog heart experiments, L.A.N. of C.N.R.: 222Google Scholar
  4. Cottini, C., Dotti, D., Gatti, E., and Taccardi, B., 1972, A 240-probe instrument for mapping cardiac potentials, in: “The Electrical Field of the Heart”, Ed. P. Rijlant, Bruxelles, Presses Académique Européennes, pp. 99Google Scholar
  5. Golub, G., and Reinsch, C., 1970, Singular value decomposition and least squares solutions, Num. Math. 14:5CrossRefGoogle Scholar
  6. Golub, G., Heath, M., and Wahba, G., 1977, Generalized cross-validation as a method for choosing a good ridge parameter, Report STAN-CS-77–622, Comp. Sc. Dept., Stanford UniversityGoogle Scholar
  7. Gordonova, V.l., and Morozov, V.A., 1973, Numerical parameter selection algorithms in the regularization method, Zh. Vycisl. Mat. i Mat. Fiz. 13:539Google Scholar
  8. Taccardi, B., Musso, E., and De Ambroggi, L., 1972, Current and potential distribution around an isolated dog heart, in: “The Electrical Field of the Heart”, Ed. P. Rijlant, Bruxelles, Presses Académique Européennes, pp. 566Google Scholar
  9. Taccardi, B., Viganotti, C., Macchi, E., and De Ambroggi, L., 1976, Relationships between the current field surrounding an isolated dog heart and the potential distribution on the surface of the body, in: “Adv. Cardiol.”, 16, Karger, Basel, pp. 72Google Scholar
  10. Tykhonov, A.N., and Arsenine, V., 1977, Solution of ill-posed problems J. Wiley & Sons, New YorkGoogle Scholar
  11. Van Loan, C., 1976, Generalizing the singular value decomposition, SIAM J. Numer. Anal. 13–1:76Google Scholar
  12. Wahba, G., 1977, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14:651CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • P. Colli Franzone
    • 1
  • L. Guerri
    • 1
  • B. Taccardi
    • 2
  • C. Viganotti
    • 1
  1. 1.Institute of Numerical Analysis of C.N.R.PaviaItaly
  2. 2.Institute of General PhysiologyUniversity of ParmaItaly

Personalised recommendations