Physiological Influences upon the Dynamics of Surface Maps During ST-T: Effects of Varied Heart Rate

  • E. Schubert
  • M. Engst
  • K. Mohnike


The rapid improvement of electronics and of data processing facilitates the use of the complex procedure of mapping of the dynamics of the cardiac electric field for clinical purposes. The interest of physicians in these electrocardiographic mapping investigations increases more and more, because this method belongs to the noninvasive ones and allows frequently repeated overall field recordings without any serious impairment of the patient. This is of importance in the clinical investigation of such diseases, in which a continuous supervision of the cardiac functions of the patient is needed, for example the recent myocardial infarction (Selwyn et al., 1978), or an exact localization of disturbances in the cardiac excitation pathways as for example ventricular preexcitations or conduction defects (Préda et al., 1978). It also improves the diagnoses which utilize follow up studies of the dynamics of the cardiac performance during exercise tests especially in ischaemic heart diseases (Block et al., 1978; Fox, 1979). Empirical methods for this purpose have been developed in the form of the Ecg-ST-T-mapping (Fox et al., 1978).


Exercise Test Increase Heart Rate Varied Heart Rate Physiological Influence Continuous Supervision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amirow, R. S., 1965, “Elektrokardiotopographia,” Medgis, Moscow, p. 22 f Cruss.).Google Scholar
  2. Block, P., Raadschelders, J. , Smets, Ph., Darquenne, H., Lanaers, A., Bourgain, R., and Kornreich, F., 1978, Usefulness of Ecg, Vcg and body surface mapping technique during exercise for the diagnosis of coronary artery disease (CAD), in: “Modern Electrocardiology,” Z. Antaloczy, ed., Akademiai Kiado, Budapest, pp. 541–544.Google Scholar
  3. Eckoldt, K., Bodmann, K.-H., Cammann, H., Pfeifer, B., and Schubert, E. (1976), Sinus arrhythmia and heart rate in hypertonic disease, in: “Adv. Cardiol.,” H. Abel, ed., Karger Basle, 16:366–369.Google Scholar
  4. Fox, K. M., Selwyn, A. P., and Shillingford, J. P., 1978, A method for praecordial surface mapping of the exercise electrocardiogram, Brit. Heart J., 40:1339–1343.PubMedCrossRefGoogle Scholar
  5. Fox, K. M., Selwyn, A. P., and Shillingford, J. P., 1979, Projection of electrocardiographic signs in praecordial maps after exercise in patients with ischaemic heart disease, Brit. Heart J., 42:416–421.PubMedCrossRefGoogle Scholar
  6. Hegglin, R. , and Holzmann, M., 1937, Die klinische Bedeutung der verlängerten QT-Distanz (Systolendauer) im Elektrokardiogramm, Z. Klin. Med., 132:1–5.Google Scholar
  7. Préda, J., Bukosza, J., Kozmann, G., Shakin, V. V., Szekely, A., and Antalóczy, Z., 1978, Distribution of heart potentials on the human thoracic surface in the cases of left bundle branch blocks, in: “Modern electrocardiology,” Z. Antaloczy, ed., Akademiai Kiadó, Budapest, pp.115–120.Google Scholar
  8. Schubert, E., Engst, M., Kästner, R., and Mohnike, K., 1976, Averaged repolarization field maps of healthy persons in different respiratory states, in: “Proceedings of the Conference on Measuring and Modelling of the Cardiac Electric Field,” P. Kneppo, ed., Bratislava (in press).Google Scholar
  9. Schubert, E., 1972, The temporo-spatial evolution of activation and repolarization of the heart and its relation to the electric field, in: “The electrical field of the heart,” P. W. Rijlant, ed., Press Acad. Europ. Brussels, pp. 506–511.Google Scholar
  10. Selwyn, A. P., Fox, K., Welman, E., and Shillingford, J. P., 1978, Natural history and evaluation of Q waves during acute myocardial infarction, Brit. Heart J., 40:383–387.PubMedCrossRefGoogle Scholar
  11. Sheffield, L. T., Roitman, D., and Kansal, S., 1979, Computer measurement of bipolar and unipolar exercise Ecg leads, in: “Progress in Electrocardiology,” P. W. Macfarlane, ed., Pitman Medical, Tunbridge Wells, pp. 312–315.Google Scholar
  12. Simonson, E., 1972, Physiological variations in the genesis of the electrocardiogram, in : “The electrical field of the heart,” P. W. Rijlant, ed., Press, Acad. Europ. Brussels, pp. 523–531.Google Scholar
  13. Spach, M. S., and Barr, R. C., 1978, Isopotential mapping in subjects of all ages: an analysis of low level potentials, in: “Progress in Electrocardiology,” P. W. Macfarlane, ed., Pitman Medical, Tunbridge Wells, pp. 225–227.Google Scholar
  14. Taccardi, B., 1966 Recent data on the cardiac electric field, in: “Neue Erg. Elektrokardiol. I,” E. Schubert, ed., Fischer Jena, pp. 23–29.Google Scholar
  15. Taccardi, B., de Ambroggi, L., and Viganotti, C., 1976, Body surface mapping of heart potentials, in: “The theoretical basis of electrocardiology,” C. V. Nelson, and D. B. Geselowitz, eds., Clarendon Press, Oxford, pp. 436–466.Google Scholar
  16. Trautwein, W., Kassebaum, P. G., Nelson, R. M., and Hecht, H. H., 1962, Electrophysiological study of human heart muscle, Circ. res., 10:306–312.PubMedGoogle Scholar
  17. Young, B. D., Macfarlane, P. W., and Lawrie, T. D. V., 1974, Normal thoracic surface potentials, Cardiovasc. Res., 8:187–193.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. Schubert
    • 1
  • M. Engst
    • 1
  • K. Mohnike
    • 1
  1. 1.Institute of PhysiologyHumboldt-UniversityBerlinGermany

Personalised recommendations