Interaction of Liposomes with Cells: Model Studies

  • Catherine Vakirtzi-Lemonias
  • Kalliope Sekeris-Pataryas
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 47)


It is well documented to date that the mode of interaction of a given cell type with liposomes is affected by the chemical composition of the latter. Thus, it has been shown that “fluidity”, charge and size of the vesicles are important parameters in determining the mechanism by which liposomes interact with their target cells.1


Metabolic Inhibitor Total Uptake Dictyostelium Discoideum Trypanosoma Brucei Cellular Slime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Poste, The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules in: “Liposomes in Biological Systems”, G. Gregoriadis and A.C. Allison, eds., John Wiley, Chichester, New York (1980).Google Scholar
  2. 2.
    H. Kutchai, Y. Barenholz, T.F. Ross and D.E. Wermer, Developmental changes in plasma membrane fluidity in check embryo heart, Biochim. Biophys. Acta, 436: 101 (1976).Google Scholar
  3. 3.
    Y. Kawasaki, N. Wakayama, T. Koike, M. Kawai and T. Amano, A change in membrane microviscosity of mouse neuroblastoma cells in association with morphological differentiation, Biochim. Biophys. Acta, 509: 40 (1978).Google Scholar
  4. 4.
    A. Ryter and P. Brachet, Cell surface changes during early development stages of Dictyostelium discoideum: A scanning electron microscopic study, Biol. Cellul., 31: 265 (1978)Google Scholar
  5. 5.
    H.B. Bosmann, Mechanism of cellular drug resistance, Nature, 233: 566 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    D.V. Mohan Das and G. Weeks, Effects of polyunsaturated fatty acids on the growth and differentiation of the cellular slime mould, Dictyostelium discoideum, Exp. Cell. Res. 118: 237 (1979).Google Scholar
  7. 7.
    A. Kennedy and C. Rice-Evans, A spectrofluorimetric study of the interaction of glycerol mono-oleate with human erythrocyte ghosts, FEBS Letters, 69: 45 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    B.E. Schaeffer and A.S.G. Curtis, Effects on cell adhesion and membrane fluidity of changes in plasmalemmal lipids in mouse L929 cells, J. Cell. Sc. 26: 47 (1977).Google Scholar
  9. 9.
    W.F. Loomis, “Dictyostellium discoideum. A developmental system”, Academic Press, New York (1975).Google Scholar
  10. 10.
    G. Gerisch, Cell aggregation and differentiation in Dictyostelium, Curr. Top. Develop. Biol., 3: 157 (1968).CrossRefGoogle Scholar
  11. 11.
    J. Fukui and J. Takeuchi, Drug resistant mutants and appearance of heterozygotes in the cellular slime mould Dictyostelium discoideum., J. Gen. Microb. 67: 307 (1971).Google Scholar
  12. 12.
    K. Muller and G. Gerisch, A specific glycoprotein as the target site of adhesion blocking Fab in.aggregating Dictyostelium cells, Nature, 274: 445 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R.W. Parish and S. Schmidlin, Synthesis of plasma membrane pro-eins during development of Dictyostelium discoideum. FEBS Letters, 98: 257 (1979).CrossRefGoogle Scholar
  14. 14.
    N.R. Gilkes, K. Laroy and G. Weeks, An analysis of the protein, glycoprotein and monosaccharide composition of Dictyostelium discoideium plasma membranes during development, Biochim. Biophys. Acta, 551: 349 (1979).Google Scholar
  15. 15.
    E.J. Henderson, the cyclic adenosine 3’5’-monophosphate receptor of Dictoystelium discoideum, J. Biol. Chem., 250: 4730 (1975).PubMedGoogle Scholar
  16. 16.
    S. Sierers, H.J. Risse and K. Sekeri-Pataryas, Mol. Cell. Biochem. 20; 103 (1978).Google Scholar
  17. 17.
    K.L. Lee, Cell electrophoresis of the cellular slime mould Dictyostelium discoideum, J. Cell. Sc. 10: 229 (1972).Google Scholar
  18. 18.
    G. Weeks and F.G. Herring, The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. J. Lip. Res. 21: 681 (1980).Google Scholar
  19. 19.
    H.B. Long and E.L. Coe, Changes in neutral lipid constituents during differentiation of the cellular slime mould Dictyostelium discoideum, J. Biol. Chem. 249–521 (1974).Google Scholar
  20. 20.
    J.S. Ellingson, Changes in the phospholipid composition in the differentiating cellular slime mould Dictyostelium discoideum, Biochim. Biophys. Acta 337: 60 (1974).Google Scholar
  21. 21.
    C. de Chastellier and A. Ryter, Changes of the cell surface and of the digestive apparatus of Dictyostelium discoideum during the starvation period triggering aggregation. J. Cell Biol. 75: 218 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Newton, The chemotherapy of trypanosomiasis and leishmania-+ sis, CIBA Found. Symp. (new series), 20: 285 (1974).Google Scholar
  23. 23.
    A.M. Fairlamb, F.R. Opperdoes and O. Borst, New approach to screening drugs for activity against African Trypanosomíasis, Nature, 265: 270 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    C.J. Bacchi, H.C. Nathan, S.H. Hutner, P.P. McCann and A. Sjoerdsma, Polyamine metabolism; A potential therapeutic target in Trypanosomes, Science, 210: 332 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    G.A.M. Cross, Antigenic variation in trypanosomes, Proc. R. Soc. London B. 202: 55 (1978).CrossRefGoogle Scholar
  26. 26.
    J.D. Barry and K. Víckerman, Trypanosoma brucei: Loss of variable antigens during transformation from bloodstream to procyclic forms in vitro, Exp. Parasitol., 48: 313 (1979).Google Scholar
  27. 27.
    K. Vikerman, Antigenic variation in trypanosomes, Nature, 273: 613 (1978).CrossRefGoogle Scholar
  28. 28.
    H. Van de Bossche, Chemotherapy of parasitic infections, Nature, 273: 626 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    C.D.V. Black, G.J. Watson and R.J. Ward, The use of pentostam liposomes in the chemotherapy of experimental leishmaniasis, Trans. Roy. Soc. Trop. Med. Hyg. 71: 550 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    R.R.C. New, M.L. Chance, S.C. Thomas and W. Peters, Antileishmanial activity of antimonials entrapped in liposomes, Nature, 272: 55 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    C.R. Alving, E.A. Steck, W.L. Chapman Jr., V.B. Waits, L.D. Hendricks, G.M. Swartz Jr., and W.L. Hanson, Therapy of leishmaniasis: Superior effecacies of liposome-encapsulated drugs, Proc. Nat. Acad. Sci. USA, 75: 2959 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Vickerman, The ultrastructure of pathogenic flagellates, CIBA Found. Symp. (new series), 20: 171 (1974).Google Scholar
  33. 33.
    R.B. McGhee and W.B. Cosgrove, Biology and Physiology of the lower Trypanosomatidae, Microbiol. Rev. 44: 140 (1980).Google Scholar
  34. 34.
    G.W. Kidder and B.N. Dutta, The growth and nutrition of Crithidia fasciculata, J. Gen. Microbiol., 18: 621 (1958).PubMedGoogle Scholar
  35. 35.
    K.M. Tamburro and S.H. Hunter, Carbohydrate-free media for Crithidia, J. Protozool, 18: 667 (1971).PubMedGoogle Scholar
  36. 36.
    N.S. Constantsas, G.M. Levis and C. Vakirtzi-Lemonias, Crithidia fasciculata tyrosine transaminase, 1. Development, characterization and differentiation from alanine transaminase, Biochim. Biophys. Acta., 230: 137 (1971).Google Scholar
  37. 37.
    F.B. St. C. Palmer, Lipids of Crithidia fasciculata, The occurrence and turnover of phosphoinosides, Biochim. Biophys. Acta., 316: 396 (1973).Google Scholar
  38. 38.
    P.A.J. Gorin, J.O. Previato, L. Mendosa-Previato and L.R. Travassos, Structure of the D-mannan and D-arabino- galactan in Crithidia fasciculata, Changes in composition with age of culture, J.’Protozool, 26: 473 (1979).Google Scholar
  39. 39.
    N. Frantzis and C. Vakirtzi-Lemonias, Concanavalin A receptors of the surface membrane of Crithidia fasciculata. Biochem. Soc. Trans., 9: 135 (1981).Google Scholar
  40. 40.
    K.B. Easterbrook, The ultrastructure of Crithidia fasciculata, A freeze-etching study, Canad. J. Microbiol. 17: 277 (1971)Google Scholar
  41. 41.
    B.E. Brooker, The cell coat of Crithidia fasciculata, Parasitology 72: 259 (1976).PubMedCrossRefGoogle Scholar
  42. 42.
    C. Vakirtzi-Lemonias, C.C. Karahalios and G.M. Levis, Fatty acid oxidation by Crithidia fasciculata, Can. J. Biochem., 50: 501 (1972).Google Scholar
  43. 43.
    C.J. Bacchi, C. Lambros, B. Goldberg, S.G. Hutner and G.D.F. de Carvalho, Susceptibility of an insect Leptomonas and Crithidia fasciculata to several established antitrypanosomatid agents, Antimicrob. AA. Chemother. 6: 785 (1974).Google Scholar
  44. 44.
    M. Midgley, The transport of -aminobutyrate into Crithidia fasciculata, Biochem. J. 174: 191 (1978).PubMedGoogle Scholar
  45. 45.
    V.C. Dewey, G.W. Kidder and L.L. Nolan, Mechanism of inhibition of Crithidia fasciculata by adenosine and adenosine analogs, Biochem. Pharmacol., 27: 1479 (1978).Google Scholar
  46. 46.
    M. Midgley and M.C. Stephenson, Measurement of membrane potential component of the transmembrane proton electrochemical gradient in Crithidia fasciculata, Biochem. Soc. Trans Google Scholar
  47. 47.
    C. Vakirtzi-Lemonias and G. Gregoriadis, Uptake of liposome entrapped agents by the trypanosome Crithidia fasciculata, Biochem. Soc. Trans., 6: 1241 (1978).Google Scholar
  48. 48.
    J. Gruenberg, D. Coral, A.L. Knupfer and J. Deshusses, Interactions of liposomes with Trypanosoma brucei plasma membranes, Biochem. Biophys. Res. Commun., 88: 1173 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    P. Chadwick, Resistance of Pseudomonas aeru$inosa to gentamicin, Can. Med. Ass. Journal, 109: 585 (1973).Google Scholar
  50. 50.
    N.J. Legakis, J. Tselentis, K.J. Courtis, J. Papavassiliou, Cross resistance of clinical isolates of Pseudomonas aeruginosa to five aminoglycosides, J. Antimicrob. Chem. 5: 487 (1979).CrossRefGoogle Scholar
  51. 51.
    R. Benviste and J. Davies, Mechanisms of antibiotic resistance in bacteria, Ann. Rev. Biochem. 42: 471 (1973)CrossRefGoogle Scholar
  52. 52.
    T.R. Korfhagen, J.C. Lopez and J.A. Ferrel, Pseudomonas aeruginosa R factors determining gentamicin plus carbenicillin resistance from patients with urinary tract colonization. Antìmicr. Agents Chemoth., 7: 64 (1975).Google Scholar
  53. 53.
    J.W. Payne and C. Gilvarg, Size restriction on peptide utilization in E. coli, J. Biol. Chem. 243: 6291 (1968).Google Scholar
  54. 54.
    P.E. Lianous, H.P. Bassaris, G.K. Kaikos, T.A. Katsorchis and N.J. Legakis, Increased adherence to human epithelial cells of resistant Pseudomonas aeruginosa strains, J. Infect. 2: 354 (1980).CrossRefGoogle Scholar
  55. 55.
    N.C. Jones and M.J. Osborn, Interaction of Salmonella tyRhimurium with phospholipid vesicles, J. Biol. Chem. 252: 7398 (1977).PubMedGoogle Scholar
  56. 56.
    N.C. Jones and M.J. Osborn, Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium, J. Biol. Chem. 252: 7405 (1977).PubMedGoogle Scholar
  57. 57.
    H. Nikaido and T. Nakae, The outer membrane of gram negative bacteria, Adv. Microb. Physiol., 20: 164 (1979).Google Scholar
  58. 58.
    T.I. Nicas and R.E.W. Hancock, Outer membrane protein Hi of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetracetate, Polymyxin B, and gentamicin, J. Bacter., 143: 872 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Catherine Vakirtzi-Lemonias
    • 1
  • Kalliope Sekeris-Pataryas
    • 1
  1. 1.Biology DivisionNuclear Research Center Demokritos Aghia Paraskevi AttikisAthensGreece

Personalised recommendations