Skip to main content

Targeting of Liposomes: Study of Influencing Factors

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 47))

Abstract

A decade has now elapsed since liposomes were first proposed1–3 as vehicles for drug delivery in biology and medicine. During this time extensive studies have revealed a multitude of uses4 and at the same time established many of the principles governing the system’s behaviour within the biological milieu.5–7 Among the advantages that liposomes offer as a drug carrier system, versatility in structural characteristics is most prominent. For instance, appropriate choice of lipid composition, size, surface charge and also of surface ligands that can recognise and associate with, target cells selectively can all profoundly influence the fate and behaviour of the carrier and thus contribute towards optimising the action of its drug contents. One of the major objectives in the use of liposomes in vivo is interaction with accessible cells i.e. those in the blood circulation, lining the capillaries and, in certain cases, cells in extravascular areas separated from the circulation by leaky membranes. There is, therefore, a need for drugs to be retained by the carrier for periods of time necessary for effective access to, and association with the target. Here we have attempted to understand factors that influence (a) quantitative retention of drugs by liposomes in vitro and in vivo (b) rates of liposome clearance from the circulation and (c) targeting of liposomes to specific cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gregoriadis and B.E. Ryman, Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases, Biochem. J. 124: 58P (1971).

    Google Scholar 

  2. G. Gregoriadis and B.E. Ryman, Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases, Eur. J. Biochem. 24: 485 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. G. Gregoriadis and B.E. Ryman, Lysosomal localization of enzyme-containing liposomes injected into rats, Biochem. J. 128: 142 (1972).

    Google Scholar 

  4. G. Gregoriadis, Targeting of Drugs: Implications in Medicine, Lancet, 2: 241 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. G. Gregoriadis, The carrier potential of liposomes in Biology and Medicine, New Engl. J. Med. 295: 704 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. G. Gregoriadis, The carrier potential of liposomes in Biology and Medicine, New Engl. J. Med. 295: 765 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. B.E. Ryman and D.A. Tyrrell, Bags of potential, Essays Biochem. 16: 49 (1980).

    PubMed  CAS  Google Scholar 

  8. G. Gregoriadis, Drug entrapment in liposomes, FEBS Lett., 36: 292 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. L. Krupp, A.V. Chobanian and I.P. Brecher, The in-vivo transformation of phospholipid vesicles to a particle resembling HDL in the rat, Biochem. Biophys. Res. Comm. 72: 1251 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. G. Scherphof, F. Roerdink, M. Waite and J. Parks, Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high density lipoproteins, Biochim. Biophys. Acta. 542: 296 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. T.M. Allen, A study of phospholipid interaction between high density lipoproteins and small unilamellar vesicles, Biochim. Biophys. Acta. 640: 385 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. C. Kirby, J. Clarke and G. Gregoriadis, Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum, FEBS Lett. 111: 324 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. C. Kirby and G. Gregoriadis, The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo, Life Sciences, 27: 2223 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. L.S.S. Guo, R.L. Hamilton, J. Goerke, J.N. Weinstein and R.J. Havel, Interaction of unilamellar liposomes with serum lipoproteins and apolipoprotein, J. Lipid Res. 21: 993 (1980).

    PubMed  CAS  Google Scholar 

  15. P.D. Ladbrooke, R.M. Williams and D. Chapman, Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction, Biochim. Biophys. Acta, 150: 333 (1968).

    Article  PubMed  CAS  Google Scholar 

  16. R.A. Demel and B. Kruyff, The function of sterols in membranes, Biochim. Biophys. Acta. 457: 109 (1976).

    PubMed  CAS  Google Scholar 

  17. D. Papahadjopoulos, K. Jacobson, S. Nir and T. Isac, Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta., 311: 330 (1973).

    Article  PubMed  CAS  Google Scholar 

  18. G. Gregoriadis and C. Davis, Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Comm. 89: 1287 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. C. Kirby, J. Clarke and G. Gregoriadis, Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro, Biochem. J. 186: 591 (1980).

    PubMed  CAS  Google Scholar 

  20. G. Gregoriadis and J. Senior, The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation, FEBS Lett. 119: 43 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. J. Senior and G. Gregoriadis, Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components, (Submitted).

    Google Scholar 

  22. A.R. Tall, Studies on the transfer of phosphatidylcholine from unilamellar vesicles into plasma high density lipoproteins in the rat, J. Lipid Res., 21: 354 (1980).

    PubMed  CAS  Google Scholar 

  23. G. Scherphof, J. Damen, D. Hoekstra, A.J.B.M. Van Renswoode and F.H. Roerdink, Fundamental studies on the cellular uptake of liposomes, in: “Cell Biological Aspects of Disease”, Th. W. Daems, E.H. Burger and B.A. Afzelius, eds., Leiden University Press, The Hague (1980).

    Google Scholar 

  24. C. Kirby and G. Gregoriadis, Plasma-induced release of solutes from small unilamellar liposomes is associated with pore formation in the bilayers. Biochem. J., 199: 251 (1981).

    PubMed  CAS  Google Scholar 

  25. C. Kirby and G. Gregoriadis, The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection (Submitted).

    Google Scholar 

  26. D.S. Alberts, S.Y. Chang, H-S.G. Chen, T.E. Moon, T.L. Evans, R.L. Furner, K. Himmelstein and J.F. Gross, Kinetics of intravenous melphalan, Clin. Pharmacol. Ther., 26: 73 (1979).

    PubMed  CAS  Google Scholar 

  27. R.L. Juliano and D. Stamp, Interactions of drugs with lipid membranes: Characteristics of liposomes containing polar or non-polar antitumour drugs, Biochim. Biophys. Acta., 586: 137 (1979).

    Article  CAS  Google Scholar 

  28. K.J. Huang, K-F.S. Luke and P.L. Beaumier, Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study, Proc. Nat. Acad. Sci. USA, 77: 4030 (1980).

    Article  Google Scholar 

  29. C.D.V. Black and G. Gregoriadis, Interaction of liposomes with blood plasma proteins, Biochem. Soc. Trans., 4: 253 (1976).

    PubMed  CAS  Google Scholar 

  30. D.A. Tyrrell, V.J. Richardson and B.E. Ryman, The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver, Biochim. Biophys. Acta., 497: 469 (1977).

    Article  PubMed  CAS  Google Scholar 

  31. G. Gregoriadis, D.E. Neerunjun and R. Hunt, Fate of a liposome-associated agent injected into normal and tumour bearing rodents. Attempts to improve localization in tumour tissues, Life Sciences, 21: 357 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. P. Large and G. Gregoriadis, The effect of storage on the stability of drug-containing small unilamellar liposomes (Submitted).

    Google Scholar 

  33. G. Gregoriadis and E.D. Neerunjun, Homing of liposomes to target cells, Biochem. Biophys. Res. Comm., 65: 537 (1975).

    Article  PubMed  CAS  Google Scholar 

  34. V.P. Torchilin, V.G. Omel Yanenko, A.L. Klibanov, A.I. Michailov, V.I. Gol’Danskii and V.N. Smirhov, Incorporation of hydrophilic protein modified with hydrophobic agent into liposome membrane, Biochim. Biophys. Acta., 602: 511 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. P. Ghosh, P.K. Das and B.K. Bachhawat, Selective uptake of liposomes by different cell types of liver through the involvement of liposomal surface glycosides, Biochem. Soc. Trans., 9: 512 (1981).

    PubMed  CAS  Google Scholar 

  36. A. Huang, L. Huang and S.J. Kennel, Monoclonal antibody covalently coupled with fatty acid, J. Biol. Chem. 255: 8015 (1980).

    PubMed  CAS  Google Scholar 

  37. L.D. Leseruran, J. Barbet, F. Kourilsky and J.N. Weinstein, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A, Nature, 288: 602 (1980).

    Article  Google Scholar 

  38. T.D. Heath, R.T. Fraley and D. Papahadjopoulos, Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab’)2 to vesicle surface, Science, 210: 539 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. V.K. Jansons and P.L. Mallett, Targeted liposomes: a method for preparation and analysis, Anal. Biochem. 111: 54 (1981).

    Article  PubMed  CAS  Google Scholar 

  40. G. Gregoriadis, A. Meehan and M.M. Mah, Interaction of antibody-bearing small unilamellar liposomes with target free antigen in vitro and in vivo: Some influencing factors, Biochem. J. 200: 203 (1981).

    PubMed  CAS  Google Scholar 

  41. G. Gregoriadis and A. Meehan, Interaction of antibody-bearing small unilamellar liposomes with antigen-coated cells: the effect of antibody and antigen concentration on the liposomal and cell surface respectively, Biochem. J. 200: 211 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Gregoriadis, G., Kirby, C., Large, P., Meehan, A., Senior, J. (1982). Targeting of Liposomes: Study of Influencing Factors. In: Gregoriadis, G., Senior, J., Trouet, A. (eds) Targeting of Drugs. NATO Advanced Study Institutes Series, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4241-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4241-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4243-4

  • Online ISBN: 978-1-4684-4241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics