Advertisement

Hepatocyte Targeting of Antiviral Drugs Coupled to Galactosyl-Terminating Glycoproteins

  • L. Fiume
  • C. Busi
  • A. Mattioli
  • P. G. Balboni
  • G. Barbanti-Brodano
  • Th Wieland
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 47)

Abstract

This chapter deals with the possibility of specifically introducing inhibitors of DNA synthesis into hepatocytes by conjugation to galactosyl-terminating glycoproteins which are selectively taken up by parenchymal liver cells (Morell et al., 1968; Ashwell and Morell, 1974; Gregoriadis, 1975). This line of research, which was developed as an approach to the treatment of chronic hepatitis B, started from the finding (Derenzini et al., 1973) that β-amanitin after coupling to albumin changed its original target Ed selectively penetrated into cells of the macrophage system which are very active in internalising albumin.

Keywords

Antiviral Drug Cytosine Arabinoside FEBS Letter Lysosomotropic Agent Adenine Arabinoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akazaki, K., 1953, Tumors of the reticulo-endothelial system, Acta Path. Tap. 3: 24.Google Scholar
  2. Ashwell, G., and Morell A.G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol., 41: 99.PubMedGoogle Scholar
  3. Balboni, P.G., Minia, A., Grossi, M.P., Barbanti-Brodano, G., and Fiume, L., 1976, Activity of albumin conjugates of 5-fluorodeoxyuridine and cytosine arabinoside on poxviruses as a lysosomotropic approach to antiviral chemotherapy, Nature, 264: 181.PubMedCrossRefGoogle Scholar
  4. Barbanti-Brodano, G., and Fiume, L., 1973, Selective killing of macrophages by amanitin-albumin conjugates, Nature New Biology, 243: 281.PubMedCrossRefGoogle Scholar
  5. Barbanti-Brodano, G., and Fiume, L., 1974, In-vitro effect of a 5-fluorodeoxyuridine albumin conjugate on tumour cells and on peritoneal macrophages, Experientia, 30: 1180.PubMedCrossRefGoogle Scholar
  6. Bassendine, M.F., 1980, Adenine arabinoside, in: “Virus and the liver”, Bianchi, L., Sickinger, K., Gerok, W., and Stalder, G.A., eds, MTP, Lancaster.Google Scholar
  7. Benacerraf, B., Biozzi, G., Halpern, B.N., Stiffel, C., and Mouton, D., 1957, Phagocyptosis of heat-denatured human serum albumin labelled with 131I and its use as a means of investigating liver blood flow, Br. J. Expl. Pathol., 38: 35.Google Scholar
  8. Benacerraf, B., and Unanue, E.R., 1979, “Textbook of Immunology” Williams and Wilkins, Baltimore, London.Google Scholar
  9. Borondy, P.E., Chang, T., Maschewske, E., and Glazko, A.J., 1977, Inhibition of adenosine deaminase by co-vidarabine and its effect on the metabolic disposition of adenine arabinoside (vidarabine), Ann, NY Acad. Sci. 284: 9.CrossRefGoogle Scholar
  10. Buys, C.H., Marieke, G.L., Elferink, J.M., Bouma, J.M., Gruber, M., and Nieuwenhuis, P., 1973, Proteolysis of formaldehyde-treated albumin in Kfipffer cells and its inhibition by suramin, J. Reticuloend. Soc., 14: 209.Google Scholar
  11. Cessi, C., and Fiume, L., 1969, Increased toxicity of β-amanitin when bound to a protein, Toxicon, 6: 309.PubMedCrossRefGoogle Scholar
  12. Chadwick, R.G., Bassendine, M.F., Crawford, E.M., Thomas, H.C., and Sherlock, S., 1978, HBsAg-positive chronic liver disease: inhibition of DNA polymerase activity by vidarabine, Brit. Med. J., 2: 531.PubMedCrossRefGoogle Scholar
  13. De Duve, C., De Barsy, Th., Poole, B., Trouet, A., Tulkens, P., and Van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol. 23: 2495PubMedCrossRefGoogle Scholar
  14. Derenzini, M., Fiume, L., Marinozzi, V., Mattioli, A., Montanaro, L., and Sperti, S., 1973, Pathogenesis of liver necrosis produced by amanitin-albumin conjugates, Lab. Invest., 29: 150.PubMedGoogle Scholar
  15. Di Luzio, N.R., and Morrow, H.S., 1971, Comparative behaviour of soluble and particulate antigens and inert colloids in reticuloendothelial-stimulated or depressed mice, J. Reticuloend. Soc., 9: 273.Google Scholar
  16. Dunn, T.B., 1954, Normal and pathologic anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms, J. Natl. Cancer Inst., 14: 1281.PubMedGoogle Scholar
  17. Faulstich, H., and Trischmann, H., 1973, Toxicity and inhibition of RNA polymerase bya-amanitin bound to macromolecules by an azo linkage, Hnppe-Seyler’s Z. Physiol. Chem., 354: 1395.CrossRefGoogle Scholar
  18. Fenner, F., and White, D.O., 1976, “Medical Virology”, Academic Press, New York, San Francisco, London.Google Scholar
  19. Fiume, L., 1969, Penetration of a α-amanitin-rabbit-albumin conjugate into hepatic parenchymal cells, Lancet, II: 853CrossRefGoogle Scholar
  20. Fiume, L., and Barbanti-Brodano, G., 1974, Selective toxicity of amanitin-albumin conjugates for macrophages, Experientia, 30: 76.CrossRefGoogle Scholar
  21. Fiume, L., Busi, C., Mattioli, A., Balboni, P.G., and Barbanti-Brodano, G., 1981, Hepatocyte targetting of adenine-9-β-Darabinofuranoside 5′-monophosphate(ara-AMP) coupled to.,lactosaminated albumin, FEBS Lett., in press.Google Scholar
  22. Fiume, L., Campadelli-Fiume, G., and Wieland, Th., 1971, Facilitated penetration of amanitin-albumin conjugates into hepatocytes after coupling with fluorescein, Nature New Biol., 230: 219.PubMedCrossRefGoogle Scholar
  23. Fiume, L., and Laschi, R., 1965, Lesioni ultrastrutturali prodotte nelle cellule parenchimali epatiche dalla falloidina e dalla α-amanitina, Sperimentale, 115: 288.PubMedGoogle Scholar
  24. Fiume, L., Mattioli, A., Balboni, P.G., and Barbanti-Brodano, G., 1979a, Albumin conjugates of fungal toxins and of inhibitors of DNA synthesis, in: “Drug Carriers in Biology and Medicine”, G. Gregoriadis ed., Academic Press, London, New York, San Francisco.Google Scholar
  25. Fiume, L., Mattioli, A., Balboni, P.G., Tognon, M., Barbanti-Brondano G., De Vries, J., and Wieland, Th., 1979b, Enhanced inhibition of virus DNA synthesis in hepatocytes by trifluorothymidine coupled to asialofetuin, FEBS Lett., 103: 47.PubMedCrossRefGoogle Scholar
  26. Fiume, L., Mattioli, A., Busi, C., Balboni, P.G., Barbanti-Brodano, G., De Vries, J., Altmann, R., and Wieland, Th., 1980, Selective inhibition of Ectromelia virus DNA synthesis in hepatocytes by adenine-9-β-arabinofuranoside (ara-A) and adenine-9-β-D-arabinofuranoside 5′-monophosphate (ara-AMP) coupled to asialofetuin, FEBS Lett., 116: 185.PubMedCrossRefGoogle Scholar
  27. Furth, J.J., and Cohen, S.S., 1967, Inhibition of mammalian DNA polymerase by 5′-triphosphate of 9-β-D-arabinofuranosyladenine, Cancer Res., 27: 1528.PubMedGoogle Scholar
  28. Gall, E.A., Mallory, T.B., 1942, Malignant lymphoma. A clinico- pathologic survey of 618 cases, Am. J. Path., 18: 381PubMedGoogle Scholar
  29. Gray, G.R., 1974, The direct coupling of oligosaccharides to proteins and derivatized gels, Arch. Biochem. Biophys., 163: 426.PubMedCrossRefGoogle Scholar
  30. Gregoriadis, G., 1975, Catabolism of glycoproteins, in: “Lysosomes in Biology and Pathology (4)”, J.T. Dingle, and R.T. Dean, eds. North Holland Publishing Co., Amsterdam, Oxford and American. Elsevier Publishing Co., New York.Google Scholar
  31. Gregoriadis, G., and Neerunjun, E.D., 1975, Homing of liposomes to target cells, Biochem. Biophys. Res. Commun., 65: 537PubMedCrossRefGoogle Scholar
  32. Hafkin, B., Pollard, R.B., Tiku, M.L., Robinson, W.S., and Merigan, T.C., 1979, Effects of interferon and adenine arabinoside treatment of hepatitis B virus infection of cellular immune responses, Antimicrobial Agents and Chemotherapy, 16: 781.PubMedGoogle Scholar
  33. Halloran, M.J., and Parker, C.W., 1966, The preparation of nucleotide protein conjugates: carbodiimides as coupling agents, J. Immunol., 96: 373.PubMedGoogle Scholar
  34. Haurowitz, F., 1968, “Immunochemistry and the biosynthesis of antibodies”, Interscience, New York.Google Scholar
  35. Hencin, R.S., and Preston, J., 1979, Differential inhibition of cultured cell types by α -amanitin bovine serum albumin conjugates, Mol. Pharmacol., 16: 961.PubMedGoogle Scholar
  36. Hubbard, A.L., Wilson, G., Ashwell, G., and Stukenbrok, H., 1979, An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types, J. Cell Biol., 83: 47.PubMedCrossRefGoogle Scholar
  37. Kedinger, C., Gniazdowski, M., Mandel, J.L., Gissinger, F., and Chambon, P., 1970, α -Amanitin: a specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus, Biochem. Biophys. Res. Commun., 38; 165Google Scholar
  38. Krantz, M.J., Holtzman, N.A., Stowell, C.P., and Lee, Y.C., 1976, Attachment of thioglycosides to proteins: Enhancement of liver membrane binding, Biochemistry, 15: 3963.PubMedCrossRefGoogle Scholar
  39. Kruse, H., and McMaster, P.D., 1949, The distribution and storage of blue antigenic azoproteins in the tissues of mice, J. Exp. Med., 90: 425.PubMedCrossRefGoogle Scholar
  40. Lindell, Th., Weinberg, F., Morris, P.W., Roeder, R.G., and Rutter, W.J., 1970, Specific inhibition of nuclear RNA-polymerase II by α-amanitin, Science, 170: 447.PubMedCrossRefGoogle Scholar
  41. Marinozzi, V., and Fiume, L., 1971, Effects of CY-amanitin on mouse and rat liver cell nuclei, Exp. Cell. Res., 67: 311.PubMedCrossRefGoogle Scholar
  42. Merigan, T.C., and Robinson, W.S., 1978, Antiviral therapy in HBV infection, in: “Viral hepatitis” Vias, G.N., Cohen, S.N., Schmid, R., eds., The Franklin Institute Press, Philadelphia.Google Scholar
  43. Mims, C.A., 1959a, The response of mice to large intravenous injections of Ectromelia virus. I. The fate of injected virus, Br. J. Expl. Pathol., 40: 533.Google Scholar
  44. Mims, C.A., 1959b, The response of mice to large intravenous injection of Ectromelia virus. H. The growth of virus in the liver, Br. J. Expl. Pathol., 40: 543.Google Scholar
  45. Morell, A.G., Irvine, R.G., Sternlieb, I., Scheinberg, I.H., and Ashwell, G.A., 1968, Physical and chemical studies on ceruloplasmin, J. Biol. Chem., 243: 155.PubMedGoogle Scholar
  46. Plunkett, W., Alexander, L., Cubb, S., and Loo, T.L., 1979, Comparison of the activity of 2′-deoxycoformicin and erythro9-β-hydroxy-3-nonyl)adenine in vivo, Biochem. Pharmacol., 28: 201.PubMedCrossRefGoogle Scholar
  47. Pollard, R.B., Smith, J.L., Neal, E.A., Gregory, P.B., Merigan, T.C., and Robinson, W.S., 1978, Effect of vidarabine on chronic hepatitis B virus infection. J. Am. Med. Ass., 239: 1648.CrossRefGoogle Scholar
  48. Regoeczi, E., Chindemi, P.A., Hatton, M.W.C., and Berry, L.R., 1980, Galactose-specific elimination of human asialotransferrin by the bone marrow in the rabbit, Arch. Biochem. Biophys., 205: 76.PubMedCrossRefGoogle Scholar
  49. Regoeczi, E., Debanne, M.T., Hatton, M.W.C., and Koj, A., 1978, Elimination of asialofetuin and asialorosomucoid by the intact rat. Quantitative aspects of the hepatic clearance mechanism, Biochem. Biophys. Acta, 541: 372.PubMedCrossRefGoogle Scholar
  50. Roberts, J.A., 1963, Histopathogenesis of mousepox: III Ectromelia virulence, Br. J. Expl. Pathol., 44: 465.Google Scholar
  51. Rogers, J.C., and Kornfeld, S., 1971, Hepatic uptake of proteins coupled to fetuin glycopeptide, Biochem. Biophys. Res. Commun. 45: 622.PubMedCrossRefGoogle Scholar
  52. Sacks, S.L., Smith, J.L., Pollard, R.B., Sawhney, V., Mahol, A.S., Gregory, P., Merigan, T.C., and Robinson, W.S., 1979, Toxicity of vidarabine, J. Am. Med. Ass. 241: 28.CrossRefGoogle Scholar
  53. Schwartz, B.A., and Gray, G.R., 1977, Proteins containing reductively aminated disaccharides. Synthesis and chemical characterization, Arch. Biochem. Biophys., 181: 542.PubMedCrossRefGoogle Scholar
  54. Sidwell, R.W., Allen, L.B., Huffman, J.H., Khwaja, T.A., Tolman, R.L., and Robinson, R.K., 1973, Anti DNA virus activity of the 5′-nucleotide and 3′, 5′-cyclic nucleotide of 9-β-arabinofuranosyladenine, Chemotherapy, 19: 325.PubMedCrossRefGoogle Scholar
  55. Stahl, P.D., Rodman, J.S., Miller, M.J., and Schlesinger, P.H., 1978, Evidence for receptor mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages, Proc. Natl. Acad. Sci. USA, 75: 1399.PubMedCrossRefGoogle Scholar
  56. Stirpe, F., and Fiume, LK., 1967, Effect of α-amanitin on ribonucleic acid synthesis and on ribonucleic acid polymerase in mouse liver nuclei, Biochem. J., 105: 779.PubMedGoogle Scholar
  57. Trouet, A., Deprez De Campeneere, D., and De Duve, C., 1972, Chemotherapy through lysosomes with a DNA-daunorubicin complex, Nature New Biology, 239: 110.PubMedCrossRefGoogle Scholar
  58. Unanue, E.R., 1972, The regulatory role of macrophages in antigenic stimulation, Adv. Immunol., 15: 95.PubMedCrossRefGoogle Scholar
  59. Van Furth, R., Cohn, Z.A., Hirsch, J.G., Humphrey, J.H., Spector, W.G., and Langevoort, H.L., 1972, The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells, Bull. Wld. Hlth. Org., 46: 845.Google Scholar
  60. Whitley, R.J., Chien, L.T., Buchanan, R.A., and Alford, C.A. Jr., 1975, Studies on adenine arabinoside. A model for antiviral chemotherapeutics, Persp. Virol., 9: 315.Google Scholar
  61. Wieland, Th., 1968, Poisonous principles of mushrooms of the genus Amanita, Science, 159: 946.PubMedCrossRefGoogle Scholar
  62. Wieland, Th., and Faulstich, H., 1978, Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms, Crit. Rev. Biochem., 5: 185.CrossRefGoogle Scholar
  63. Wilson, G., 1978, Effect of reductive lactosamination on the heptic uptake of bovine pancreatic ribonuclease A dimer, J. Biol. Chem., 253: 2070.PubMedGoogle Scholar
  64. Wilson, G., Eidelberg, M., and Michalak, V., 1979, Selective hepatic uptake of synthetic glycoproteins, J. Gen. Physiol., 74: 495.PubMedCrossRefGoogle Scholar
  65. York, J.L., and Le Page, G.A., 1966, A proposed mechanism for the action of 9-β-D-arabinofuranosyl-adenine as an inhibitor of the growth o some ascites cells, Can. K. Biochem. Physiol., 44: 19.CrossRefGoogle Scholar
  66. Youle, R.J., Murray, G.J., and Neville, D.M., 1979, Ricin linked to monophosphopentamannose binds to fibroblast lysosomal hydro-lase receptors, resulting in a cell-type-specific toxin, Proc. Natl. Acad. Sci. USA, 76: 5559.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • L. Fiume
    • 1
  • C. Busi
    • 1
  • A. Mattioli
    • 1
  • P. G. Balboni
    • 2
  • G. Barbanti-Brodano
    • 2
  • Th Wieland
    • 3
  1. 1.Istituto di Patologia generaleBolognaItaly
  2. 2.Istituto di MicrobiologiaFerraraItaly
  3. 3.Max-Planck-Institut für Medizinische ForschungHeidelbergGermany

Personalised recommendations