Advertisement

Oxygen Electrodes for Industrial Electrolysis and Electrochemical Power Generation

  • Ernest Yeager

Abstract

Electrochemistry is one of the technologies which can make important contributions toward solving the energy problem. A significant portion (~ 8%) of this nation’s electrical power is consumed for industrial electrolytic processes, most of which are carried out with relatively low energy efficiency. Improvements in the efficiencies of these processes will result in substantial power savings. Further, electrochemical energy conversion and storage systems using various fuel cells, batteries, and electrolysis cells offer substantial promise for stationary and vehicle applications.

Keywords

Fuel Cell High Current Density Alkaline Electrolyte Knudsen Diffusion Voltage Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Carnell and C.R.S. Needs, “Energy-Saving Catalytically Active Cathodes for Caustic-Chlorine Production,” Paper No. 260, National Meeting, The Electrochemical Society, Boston, May 6–12, 1979. Extended Abstracts 79–1, pp. 671–2.Google Scholar
  2. 2.
    W.W. Carlin and W.B. Darlington, “Activated Cathodes for Reduced Power Consumption in Electrolyte Cells,” Paper No. 261, loc. cit. Extended Abstracts 79–1, pp. 673–5.Google Scholar
  3. 3.
    I. Malkin and J.R. Brannan, “Reduced Hydrogen Overpotential in a Chlorine Cell,” Paper No. 262, loc. cit. Extended Abstracts 79–1, pp. 676–7.Google Scholar
  4. 4.
    E. Yeager, “The Sodium Amalgam-Oxygen Cell,” in Fuel Cells, W. Mitchell, ed., Chapt. 7, Academic Press, New York, 1963, pp. 300–328.Google Scholar
  5. 5.
    M. Eisenberg, in Advances in Electrochemistry and Electrochemical Engineering, C. Tobias, ed., Vol. 2, Interscience, New York,1962.Google Scholar
  6. 6.
    A. Damjanovic, M.A. Genshaw and J. Bockris, J. Electrochem. Soc, 114, 466 (1967).CrossRefGoogle Scholar
  7. 7.
    E. Yeager, J. Zagal, B. Nikolic and R. Adzic, “Optical and Electrochemical Studies of Adsorbed Transition Metal Complexes and Their O2 Electrocatalytic Properties,” Paper No. 344, National Meeting, The Electrochemical Society, Boston, May 6–12, 1979. Proceedings of the Third Symposium on Electrode Processes, The Electrochemical Society, Princeton, NJ, 1980, pp. 436–456.Google Scholar
  8. 8.
    J. Collman, M. Marrocco, P. Denisevich, C. Koval and F.C. Anson, J. Electroanal. Chem., 101, 117 (1979).CrossRefGoogle Scholar
  9. 9.
    E. Yeager, C. Krouse and K. Rao, Electrochim. Acta, 9, 1057 (1964).CrossRefGoogle Scholar
  10. 10.
    I. Morcos and E. Yeager, Electrochim. Acta, 15, 953 (1970).CrossRefGoogle Scholar
  11. 11.
    J. Appleby and J. Marie, Electrochim. Acta, 24, 195 (1979).CrossRefGoogle Scholar
  12. 12.
    A. Khutornoi, P. Bindra, R. Amadelli and E. Yeager, “Oxygen Reduction on Underpotential Deposited Metal Monolayers in NaOH,” Paper No. 29, National Meeting, The Electrochemical Society, Boston, May 6–12, 1979. Extended Abstracts 79–1, pp. 79–81.Google Scholar
  13. 13.
    J.D.E. Mclntyre, S. Gottesfeld and W.F. Peck, “Electrochemical Catalysis by Foreign Metal Adatoms,” Paper No. 339, loc. cit. Extended Abstracts 79–1, pp. 864–5.Google Scholar
  14. 14.
    R.R. Adzic and A.R. Despic, J. Phys. Chem. N.F., 98, 95 (1975).CrossRefGoogle Scholar
  15. 15.
    R.R. Adzic, A.V. Triphkovic and R.T. Atanasoski, J. Electroanal. Chem., 94, 231 (1978).CrossRefGoogle Scholar
  16. 16.
    J. McGinnety, N. Payne and I. Ibers, J. Am. Chem. Soc., 91, 6301 (1969).CrossRefGoogle Scholar
  17. 17.
    H. Behret, H. Binder, and G. Sandstede, in Proc. of the Symposium on Electrocatalysis, M. Breiter, ed., The Electrochemical Society, Princeton, NJ 1974, pp. 319–338;Google Scholar
  18. 17a.
    H. Behret, H. Binder, and G. Sandstede, Electrochim. Acta, 20, 111 (1975).CrossRefGoogle Scholar
  19. 18.
    A. Tseung, B. Hobbs, and A. Tantram, Electrochim. Acta, 15, 473 (1970).CrossRefGoogle Scholar
  20. 19.
    L. Pauling, Nature, 203, 182 (1964).CrossRefGoogle Scholar
  21. 20.
    See e.g., B. Hoffman, D. Diemente and F. Basolo, J. Am. Chem. Soc, 92, 61 (1970).CrossRefGoogle Scholar
  22. 21.
    E. Yeager, “Mechanism of Electrochemical Reactions on Non-Metallic Surfaces,” in Electrocatalysis on Non-Metallic Surfaces, NBS Special Publication 455, 1976, pp. 203–219.Google Scholar
  23. 22.
    F. Beck, W. Dammert, J. Heiss, H. Hiller and R. Polster, Z. Naturforsch. 29A, 1009 (1973).Google Scholar
  24. 23.
    F. Beck, Ber. Bunsenges, Physik. Chem., 77, 353 (1973).Google Scholar
  25. 24.
    E.I. Ochiai, Inorg. Nucl. Chem. Letters, 10, 453 (1974).CrossRefGoogle Scholar
  26. 25.
    T.G. Traylor and CK. Chang, J. Am.Chem. Soc. 95, 5810 (1973).CrossRefGoogle Scholar
  27. 26.
    M.J. Bennett and P.B. Donaldson, J. Am. Chem. Soc, 93, 3307 (1971).CrossRefGoogle Scholar
  28. 27.
    W.P. Schaefer, Inorg. Chem. 7, 725 (1968).CrossRefGoogle Scholar
  29. 28.
    J. Huang, R.K. Sen and E. Yeager, J. Electrochem. Soc., 126, 786 (1979).CrossRefGoogle Scholar
  30. 29.
    H.C. Stynes and J.A. Ibers, J.Am. Chem. Soc, 94, 5125 (1972).CrossRefGoogle Scholar
  31. 30.
    W. Brimgar, C. Chang, J. Gerbel and T. Traylor, J.Am. Chem. Soc, 96, 5597 (1974).CrossRefGoogle Scholar
  32. 31.
    J.S. Griffiths, Proc. Roy. Soc. (A) 235, 73 (1956).Google Scholar
  33. 32.
    C. Oloman, “Trickle Bed Electrochemical Reactors,” National Meeting, The Electrochemical Society, Seattle, Wash., May 1978. Extended Abstracts 78–1, No. 469.Google Scholar
  34. 33.
    M. Tarasevich, A. Sadkowski and E. Yeager, “Oxygen Electrochemistry,” in Comprehensive Treatise of Electrochemistry, Electrodics: Kinetics, Vol 6, B.E. Conway, J.O’M. Bockris, E. Yeager and R. White, eds, Plenum Press, in press.Google Scholar
  35. 34.
    J.P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval and F.C. Anson, J.Am. Chem. Soc. 102, 6027 (1980).CrossRefGoogle Scholar
  36. 35.
    J. Zagal, P. Bindra, and E. Yeager, J. Electrochem. Soc. 127, 1506 (1980).CrossRefGoogle Scholar
  37. 36.
    R. Amadelli, J. Molla, P. Bindra, and E. Yeager, J. Electrochem. Soc., submitted.Google Scholar
  38. 37.
    J. Zagal, R. Sen and E. Yeager, Inorg. Chem. 16, 3379 (1977).CrossRefGoogle Scholar
  39. 38.
    B. Nikolic, R. Adzic and E. Yeager, J. Electroanal. Chem., 103, 281 (1979).CrossRefGoogle Scholar
  40. 39.
    R. Kötz and E. Yeager, J. Electroanal. Chem., 113, 113 (1980).CrossRefGoogle Scholar
  41. 40.
    J. Molla and E. Yeager, to be submitted for publication.Google Scholar
  42. 41.
    S. Sarangapani, F.Urbach and E. Yeager, to be submitted for publication.Google Scholar
  43. 42.
    R. Zurilla, R. Sen and E. Yeager, J. Electrochem. Soc. 125, 1103 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ernest Yeager
    • 1
  1. 1.Case Laboratories for Electrochemical Studies and The Chemistry DepartmentCase Western Reserve UniversityClevelandUSA

Personalised recommendations