Electrochemical Power Generation

  • Karl Kordesch


Achieving efficient and economic energy conversion and storage is the new direction of electrochemical technology. The problem of supplying conveniently small amounts of electrical energy was simply solved with throw-away batteries. This may not be desirable in the future, even the cheap manganese dioxide cell should be made rechargeable ! In order to save precious oil improved batteries must be built for electric vehicles with the additional effect of quietly improving our city environments. “Refillable” fuel cells may be the answers instead of rechargeable secondary batteries. They may be of the alkaline type like the cells built for space applications or acidic types as used for stationary powerplants more successfully. The availability of hydrogen as energy carrier and fuel will become decisive for a future electrochemical power scenario. However, other elements like lithium or aluminum may be important for the design of portable electrical power sources with high energy density.


Fuel Cell Electric Vehicle Manganese Dioxide Union Carbide Fuel Cell System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kozawa, “Electrochemistry of MnO2”, in: Batteries, Vol. 1, Manganese Doixide, K.V. Kordesch, ed., Marcel Dekker, N.Y., 1974Google Scholar
  2. 2.
    R. Chemelli, J. Gsellmann, G. Körbler, K. Kordesch, Second International Manganese Dioxide Symposium, Tokyo, Oct. 27–29,1980Google Scholar
  3. 3.
    K.V. Kordesch and R.E. Stark, U.S. Pat. 3,113,050 (1963)Google Scholar
  4. 4.
    K.V. Kordesch and A. Kozawa, U.S. Pat. 3,945,847 (1976)Google Scholar
  5. 5.
    Interntl.Common Sample Office, P.O.Box 6116, Cleveland, 0.,44107Google Scholar
  6. 6.
    K. Kordesch, J. Gsellmann and K. Tomantschger, 5 th Australian Electrochem. Meeting, Aug. 17–22, Perth, Australia, 1980Google Scholar
  7. 7.
    EVEREADY Battery Engineering Data, Union Carbide Corp., 1976Google Scholar
  8. 8.
    E. Voss and G. Huster, Chemie Ing. Technik 38, 1966, p. 623CrossRefGoogle Scholar
  9. 9.
    K.V. Kordesch, U.S. Patents 3,042,732 (1962) and 3,288,642 (1966)Google Scholar
  10. 10.
    K. Kordesch and J. Gsellmann, 11 th Power Sources Symp. Brighton in: Power Sources 7, J. Thomas, ed., Academic Press, 1979, p.557Google Scholar
  11. 11.
    J. W. Cretzmeyer, H.R. Espig and R.S. Melrose, ibid.,p. 269Google Scholar
  12. 12.
    K.V. Kordesch, U.S. Pat. 4,105,830 (1978)Google Scholar
  13. 13.
    K.V. Kordesch, U.S. Pat. 3,883,368 (1975)Google Scholar
  14. 14.
    GATES Energy Products, Battery Application Manual 1980Google Scholar
  15. 15.
    Polapulse P-100 Six Volt Battery, Polaroid Corp., Kit No. 4155Google Scholar
  16. 16.
    K.V. Kordesch and S.J. Cieszewski, Union Carbide Res.Rep.1975–8Google Scholar
  17. 17.
    J.OM. Bockris, The Solar-Hydrogen Alternative, J. Wiley, 1975Google Scholar
  18. 18.
    K.V. Kordesch, Batteries, Vol.2, Lead-Acid Batteries and Electric Vehicles, Chapter 2, pp 201–430, Marcel Dekker, N.Y.1977Google Scholar
  19. 19.
    K.V. Kordesch “25 Years of Fuel Cell Development”, Journ. of the Electrochem. Soc. 125, March 1978, pp. 77C—91CGoogle Scholar
  20. 20.
    K.V. Kordesch, Journ. Electrochem. Soc. 118, May 1971, pp.812CrossRefGoogle Scholar
  21. 21.
    L. Handley, United Technologies Corp., Natl. Fuel Cell Seminar June 26–28, Bethesda, M., 1979, Department of Defense, DOE.Google Scholar
  22. 22.
    H. Marn, L. Christner, S. Abens, B. Baker, Energy Res.Co., ibid.Google Scholar
  23. 23.
    “From Electrocatalysis to Fuel Cells”, G. Sandstede, ed., 1972, Batteile Institute, Seattle Res. Center, Univ. of Wash. Press.Google Scholar
  24. 24.
    J.F. McElroy, General Electric Co., National Fuel Cell Seminar July 11–13, San Francisco, Calif.,1978, Deptmt. of Defense, DOEGoogle Scholar
  25. 25.
    Pratt & Whitney Aircraft Co., L.B.J. Space Center Houston,1973.Google Scholar
  26. 26.
    SAE-Congress, Detroit, 1967, Paper Nos. 670176, 670181, 670182.Google Scholar
  27. 27.
    M.R. Andrew, et al., SAE-Congress, New York, 1972, Paper 720191.Google Scholar
  28. 28.
    Cha Chuansin, et al., Wu-han Univ., Power Sources7, pp. 769.Google Scholar
  29. 29.
    H. Van den Broeck, Progress in Batteries and Fuel Cells, Vol.2 JEC Press Inc., 1979, P.O.Box 42041, Cleveland, O., 44142Google Scholar
  30. 30.
    J. McBreen, G. Kissel, K.V. Kordesch, F. Kulesa, E.J. Taylor, E. Gannon, and S. Srinivasan, 15 th IECEC, Seattle, Wash., 1980Google Scholar
  31. 31.
    “Fuel Cells in Transportation”, B. McCormick, J. Huff, S. Srinivasan, R. Bobbett, LASL-Report7634-MS, 1979.Google Scholar
  32. 32.
    K. Kordesch, Survey about carbon and its role in phosphoric acid fuel cells, Final Report, Contract BNL 464459-S, Dec. 31, 1979.Google Scholar
  33. 33.
    Ch. L. Mantell, Carbon and Graphite Handbook, Interscience,1968Google Scholar
  34. 34.
    P. Stonehart, Stonehart Assoc, Inc., National F.C. Seminar 1980Google Scholar
  35. 35.
    J. McBreen, H. Ölender, K.V. Kordesch and S. Srinivasan, Abstr. No. 21, Electrochem. Soc. Meeting, Hollywood, F1., Oct.5, 1980Google Scholar
  36. 36.
    K.V. Kordesch, Performance of Lead Batteries in a Generator-Hybrid Vehicle, 28 th Meeting of ISE, Sept.18–23, Varna, 1977Google Scholar
  37. 37.
    R.F. Soltis, J.M. Bozek, R.J. Dennington and M.O. Dustin, “Baseline Tests of the Kordesch-Hybrid Passenger Vehicle” U.S. DOE, Deptm.of T. & E.C., CONS/1011–14, NASA-TM 73769, June 1978Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Karl Kordesch
    • 1
  1. 1.Institute for Inorganic TechnologyTechnical University GrazGrazAustria

Personalised recommendations