Recent Observations of Beam Plasma Interactions in the Ionosphere and a Comparison with Laboratory Studies of the Beam Plasma Discharge

  • W. Bernstein
  • P. J. Kellogg
  • S. J. Monson
  • R. H. Holzworth
  • B. A. Whalen
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 79)


NASA Rocket 27:010 AE (E∥B) launched April 9, 1978 from the Churchill Research Range, carried a modest accelerator which injected programmed electron beams of <100 ma at 2 and 4 kV into the ionospheric plasma over the altitude range 120–240 km. A major objective of this experiment was the study of beam-plasma interactions and the possible identification of the ignition of the Beam-Plasma Discharge which has been intensively studied in laboratory configurations.

The evidence for the BPD in the following flight data will be presented:
  1. 1.

    the dependence of the 3914 Å light intensity on the spatial configuration, altitude, and beam current and voltage;

  2. 2.

    the energy spectrum of the electron flux returning to the payload during injection;

  3. 3.

    characteristics of the energetic electron flux and spatial distribution in the disturbed region surrounding the payload;

  4. 4.

    VLF and RF wave spectrums.


These data will be compared to those obtained in the laboratory experiments for similar operating conditions. Many features are clearly consistent with BPD ignition; however, other features are ambiguous. No correlations of the BPD features with intense auroral precipitation were apparent.


Pitch Angle Ionospheric Plasma Beam Injection Beam Emission Volt Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, W., Leinbach, H., Kellogg, P. J., Monson, S. J., and Hallinan, T., 1979, Further laboratory measurements of the beam-plasma discharge, J. Geophys. Res., 84:7271.ADSCrossRefGoogle Scholar
  2. Cambou, F., Dokoukine, V. S., Laveignat, J., Pellat, R., Reine, H., Saint-Marc, A., and Zhuilin, I. A., 1980, General Description of the ARAKS Experiments, Ann. De. Geophys., 36:271.Google Scholar
  3. Grandal, B., Throne, E. V., and Troim, J., 1980, Polar 5—An electron accelerator experiment within an aurora, 4. Measurements of the 391.4 nm light produced by an artificial electron beam in the upper atmosphere, Planet. Space Sci., 28:309.ADSCrossRefGoogle Scholar
  4. Green, D. W., and Whalen, B. A., 1974, Ionospheric Ion flow velocities from measurements of the ion flow distribution function technique, J. Geophys. Res., 79:2829.ADSCrossRefGoogle Scholar
  5. Hallinan, T. J., Stenback-Nielsen, H. C., and Winckler, J. R., 1978, The Echo 4 electron beam experiment: Television observations of artificial streaks indicative strong beam plasma interactions in the high latitude magnetosphere, J. Geophys. Res., 83:3263.ADSCrossRefGoogle Scholar
  6. Hallinan, T. J., Leinbach, F. H., and Bernstein, W., 1981, Studies of the beam—plasma discharge optical emissions, in preparation.Google Scholar
  7. Hess, W. N., Trichel, M., Davis, T. N., Beggs, W. C., Kraft, G. E., Stassinopoulos, E., and Maier, E. J., 1971, Artificial Aurora experiments: Experiment and principal results, J. Geophys. Res., 76:6067.ADSCrossRefGoogle Scholar
  8. Holzworth, R. H., and Koons, H. C., 1981, VLF emission from a modulated electron beam in the auroral ionosphere, J. Geophys. Res., 86:853.ADSCrossRefGoogle Scholar
  9. Israelson, G., and Winckler, J. R., 1975, Measurements of 3914 Å light production and electron scattering from electron beams artificially injected into the ionosphere, J. Geophys. Res., 80:3709.ADSCrossRefGoogle Scholar
  10. Jost, R. J., Anderson, H. R., and McGarity, J. O., 1980, Electron energy distributions measured during electron beam/plasma interactions, Geophys. Res. Lett., 7:509.ADSCrossRefGoogle Scholar
  11. Kaneko, O., Sasaki, S., and Kawashima, N., 1979, Active experiment in space by an electron beam, report, Inst. of Space and Aerosp. Sci., Univ. of Tokyo, Komaba, Megura-ku, Tokyo.Google Scholar
  12. Kellogg, P. J., and Monson, S. J., 1980, Rocket Borne Electron Accelerator results pertaining to the beam plasma discharge, presented at the COSPAR Symposium on Active Experiments, Budapest, Hungary.Google Scholar
  13. Maehlum, B. N., Mäseide, K., Arsnes, K. A., Egeland, A., Grandal, B., Holtet, J., Jacobsen, T. A., Maynard, N. C., Soras, F., Stadsnes, J., Thrane E. V., and Troim, J., 1980, Polar 5--An electron accelerator experiment within an aurora, 1. Instrumentation and Geophysical Conditions, Planet Space Sci., 28:259.ADSCrossRefGoogle Scholar
  14. McEntire, R. W., Hendrickson, R. A., and Winckler, J. R., 1974, Electron echo experiment, 1. Companion of observed and theoretical motion of artificially injected electron in the magnetosphere, J. Geophys. Res., 79:2343.ADSCrossRefGoogle Scholar
  15. Wilhelm, K., Bernstein, W., and Whalen, B. A., 1980, Study of electric fields parallel to the magnetic lines of force using artificially injected electron beams, Geophys. Res Lett., 7:117.ADSCrossRefGoogle Scholar
  16. Winckler, J. R., 1980, The application of artificial electron beams to magnetospheric research, Revs. Geophys. and Space Physics, 18:659.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. Bernstein
    • 1
  • P. J. Kellogg
    • 2
  • S. J. Monson
    • 2
  • R. H. Holzworth
    • 3
  • B. A. Whalen
    • 4
  1. 1.Dept. of Space Physics and AstronomyRice UniversityHoustonUSA
  2. 2.School of PhysicsUniversity of MinnesotaMinneapolisUSA
  3. 3.The Aerospace Corp.El SegundoUSA
  4. 4.Herzberg Institute of AstrophysicsNRC CanadaOttawaCanada

Personalised recommendations