Advertisement

High Resolution NMR Studies of Nucleic Acids

  • Cornelis Altona
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is by far the most powerful physical technique available today for the study of conformation, structure and other properties of (bio)molecules in solution. NMR spectroscopy on the one hand stands as a mature branch of science, used by scores of research groups throughout the world as a tool to solve structural, conformational and kinetic problems in almost all fields of chemistry; on the other hand it is a field in which astounding new developments still take place on a great scale. These new developments pertain both to “hardware”, (e.g. the most powerful superconducting systems from the mid-seventies are already superseded) as well as to “software”. Computer-controlled pulse-sequences now allow the execution of experiments that were unheard of a few years ago.

Keywords

Circular Dichroism Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Spectroscopy Conformational Analysis Sugar Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Standard works devoted to conformational analysis in organic chemistry areGoogle Scholar
  2. (a).
    E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, “Conformational Analysis”, Wiley, New York (1965)Google Scholar
  3. (b).
    J. Dale, “Stereochemistry and Conformational Analysis”, Verlag Chemie, New York (1978)Google Scholar
  4. (d).
    “Conformational Analysis, Scope and Present Limitations”, G. Chiurdoglu, Ed., Organic Chemistry Monographs, Vol. 21, Academic Press (1971)Google Scholar
  5. 2(a).
    “The Conformational Analysis of Heterocyclic Compounds”, F.G. Riddell, Ed., Academic Press, New York (1980).Google Scholar
  6. (b).
    C. Romers, C. Altona, H.R. Buys and E. Havinga, “Topics in Stereochemistry”, E. L. Eliel and N. L. Allinger, Eds., Vol. 4, p. 39, Wiley, New York (1969)CrossRefGoogle Scholar
  7. (c).
    L. Pauling, Proc. Natl. Acad. Sci. USA. 35:495 (1949)ADSCrossRefGoogle Scholar
  8. 3(a).
    H. J. Geise, C. Altona and C. Römers, Tetrahedron Lett. 1383 (1967).Google Scholar
  9. (b).
    C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron 36:2783 (1980)CrossRefGoogle Scholar
  10. (c).
    C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, idem. Bull. Soc. Chim. Belg. 89:125 (1980)CrossRefGoogle Scholar
  11. (d).
    C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw and C. Altona, Reel. Trav. Chim. Pays-Bas 98:576 (1979)CrossRefGoogle Scholar
  12. 4(a).
    C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw and C. Altona, Org. Magn. Reson. 15:43(1981).CrossRefGoogle Scholar
  13. (b).
    H. Saehse, Chem. Ber. 23:203 (1892); J. Prakt. Chem. 10:203 (1892)Google Scholar
  14. 5.
    E. Möhr, J. Prakt. Chem. 98:315 (1918).CrossRefGoogle Scholar
  15. 6(a).
    C. Altona, H. R. Buys, H. J. Hageman and E. Havinga, Tetrahedron 23: 2265 (1967).CrossRefGoogle Scholar
  16. (b).
    C. Altona and M. Sundaralingam, J. M. Chem. Soc. 94:8205 (1972)CrossRefGoogle Scholar
  17. 7.
    H. P. M. de Leeuw, C. A. G. Haasnoot and C. Altona, Isr. J. Chem. 20:108 (1980).Google Scholar
  18. 8.
    C. S. M. Olsthoorn, L. J. Bostelaar, J. H. van Boom and C. Altona, Eur. J. Bioehem. 112:95 (1980).CrossRefGoogle Scholar
  19. 9.
    C. S. M. Olsthoorn, C. A. G. Haasnoot and C. Altona, Eur. J. Bioehem. 106:85 (1980).CrossRefGoogle Scholar
  20. 10.
    C. S. M. Olsthoorn, L. J. Bostelaar, J. F. M. de Rooij, J. H. van Boom and C. Altona, Eur. J. Bioehem. 115:309 (1981)CrossRefGoogle Scholar
  21. 11(a).
    T. A. Early and D. R. Kearns, Proc. Natl. Acad. Sei. USA. 76:4165 (1979).ADSCrossRefGoogle Scholar
  22. (b).
    M. E. Hogan and O. Jardetzky, Proc. Natl. Acad. Sei. USA. 76:6341 (1979)ADSCrossRefGoogle Scholar
  23. (c).
    M. E. Hogan and O. Jardetzky, idem. Biochemistry 19:3640 (1980)Google Scholar
  24. 12(a).
    S. J. Opella, W. B. Wise and J. A. DiVerdi, Biochemistry 20:284 (1981).CrossRefGoogle Scholar
  25. (b).
    G.A. Webb and M. Witanowski, in: “Nitrogen NMR”, M. Witanowski and G. A. Webb, eds., p. 1, Plenum, (1973)CrossRefGoogle Scholar
  26. (c).
    E.W. Randall, ibid. p. 41Google Scholar
  27. 13(a).
    M. Witanowski, L. Stefaniak and G. A. Webb, in: “Annual Reports on NMR Spectroscopy”, G. A. Webb, ed. Vol. 7, p. 118, Academic Press, New York (1977).Google Scholar
  28. (b).
    G. C. Levy and R. L. Lichter, “Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy”, Wiley, New York (1979)Google Scholar
  29. 14.
    G.J. Martin, N. L. Martin and J.-P. Gouesnard, in: “NMR: Basic Principles and Progress”, P. Diehl and E. Fluck, eds.. Vol. 18, Springer, Heidelberg (1981).Google Scholar
  30. 15.
    J. H. Noggle and R. E. Schirmer, “The Nuclear Overhauser Effect”, Academic Press, New York (1971).Google Scholar
  31. 16.
    D. Gust, R. B. Moon and J. D. Roberts, Proc. Natl. Acad. Sci. USA. 72:4696 (1975).ADSCrossRefGoogle Scholar
  32. 17(a).
    J. A. Happe and M. Morales, J. Chem. Soc. 88:2077 (1966).CrossRefGoogle Scholar
  33. (b).
    V. Markowski, S. R. Sullivan and J. D. Roberts, J. Am. Chem. Soc. 99:714 (1977)CrossRefGoogle Scholar
  34. (c).
    P. Büchner, W. Maurer and H.Ruterjans, J. Magn. Reson.29:45 (1978)CrossRefGoogle Scholar
  35. 18.
    P. Büchner, F. Blomberg and H. Ruterjans, in: “Nuclear Magnetic Resonance Spectroscopy in Molecular Biology”, B. Pullman, ed., p. 53, Reidel, Dordrecht, Holland (1978).CrossRefGoogle Scholar
  36. 19(a).
    G. E. Hawkes, E. W. Randall and W. E. Hull, J. Chem. Soc. Perkin II, 1268 (1977).Google Scholar
  37. (b).
    L. Katz and S. Penman, J. Biol. 15:220 (1966)CrossRefGoogle Scholar
  38. 20.
    R. R. Shoup, H. T. Miles and E. D. Becker, Biochem. Biophys. Res. Commun. 23:194 (1966).CrossRefGoogle Scholar
  39. 21.
    C. D. Poulter and C. L. Livingston, Tetrahedron Lett. 755 (1979).Google Scholar
  40. 22.
    P. H. Bolton, J. Magn. Reson. 41:287 (1980).CrossRefGoogle Scholar
  41. 23(a).
    G. Mavel, “NMR Studies of Phosphorus Compounds”, in: “Annual Reports on NMR Spectroscopy”, E. F. Mooney, ed.. Vol. 5B, Academic Press, New York (1973).Google Scholar
  42. (b).
    J. H. Letcher and J. R. von Wazer, in: “Topics in Phosphorus Chemistry”, M. Grayson and E. J. Griffith, eds. Vol. 4, p. 75, Interscience, New York (1966)Google Scholar
  43. 24(a).
    M. Mark and J. R. von Wazer, J. Org. Chem. 32:1187 (1967).CrossRefGoogle Scholar
  44. (b).
    D. G. Gorenstein, J. M. Chem. Soc. 97:898 (1975)CrossRefGoogle Scholar
  45. (c).
    D. G. Gorenstein and D. Kar, Biochem. Biophys. Res. Commun. 65:1073 (1975)CrossRefGoogle Scholar
  46. (d).
    D. G. Gorenstein, J. B. Findlay, R. K. Momii, B. A. Luxon and D. Kar, Biochemistry 15:3796 (1976).CrossRefGoogle Scholar
  47. (e).
    D. G. Gorenstein, J. Chem. Soc. 99:2254 (1977)CrossRefGoogle Scholar
  48. 25.
    D. G. Gorenstein and B. A. Luxon, Biochemistry 18:3796 (1979).CrossRefGoogle Scholar
  49. 26.
    D. Perahia and B. Pullman, Biochxm. Biophys. Acta, 475:184 (1977); 435:282 (1976).Google Scholar
  50. 27.
    T.-D. Son, M. Roux and M. Ellenberger, Nucl. Acids Res. 2:1101 (1975).CrossRefGoogle Scholar
  51. 28.
    C. A. G. Haasnoot and C. Altona, Nucl. Acids Res. 6:1135 (1979).CrossRefGoogle Scholar
  52. 29.
    C. G. Reinhardt and T. R. Krugh, Biochemistry 16:2890 (1977).CrossRefGoogle Scholar
  53. 30.
    P. J. Cozzone and O. Jardetzky, Biochemistry 15:4853 (1976).CrossRefGoogle Scholar
  54. 31.
    B. D. Lerner and D. R. Kearns, J. Chem. Soc. 102:7611 (1983).Google Scholar
  55. 32.
    P. Davanloo, I. M. Armitage and D. M. Crothers, Biopolonners 18:663 (1979).CrossRefGoogle Scholar
  56. 33.
    M. Gueron and R. G. Shulman, Proc. Natl. Acad. Sci. USA. 72:3482 (1975).ADSCrossRefGoogle Scholar
  57. 34(a).
    Y. H. Mariam and W. D. Wilson, Biochem. Biophys. Res. Commun. 88:861 (1979).CrossRefGoogle Scholar
  58. (b).
    R. T. Simpson and H. Shindo, Nucl. Acids Res. 8:2093 (1980)CrossRefGoogle Scholar
  59. (c).
    L. Klevan, I. M. Armitage and D. M. Crothers, Nucl. Acids Res. 6:1607 (1979)CrossRefGoogle Scholar
  60. (d).
    P. H. Bolton and T. L. James, J. Phys. Chem. 83:3359 (1979)CrossRefGoogle Scholar
  61. 35.
    P. H. Bolton and T. L. James, J. Chem. Soc. 102:25 (1980).CrossRefGoogle Scholar
  62. 36.
    L. M. Weiner, J. M. Backer and A. I. Rezvukin, FEBS Lett. 41:40 (1974).CrossRefGoogle Scholar
  63. 37.
    P. M. J. Salemink, T. Swarthof and C. W. Hilbers, Biochemistry 18:3477 (1979).CrossRefGoogle Scholar
  64. 38(a).
    F. E. Evans and N. O. Kaplan, FEBS Lett. 105:11 (1979).CrossRefGoogle Scholar
  65. 39.
    G. J. Garssen, C. W. Hilbers, J. G. G. Schoenmakers and J. H. van Boom, Eur. J. Biochem. 81:453 (1977).CrossRefGoogle Scholar
  66. 40.
    P. M. J. Salemink, H. A. Raue, H. Heerschap, R. J. Planta and C. W. Hilbers, Biochemistry 20:265 (1981).CrossRefGoogle Scholar
  67. 41.
    H. A. M. Geerdes, J. H. van Boom and C. W. Hilbers, J. Mol. Biol 142:195 (1980); 142:219 (1980).CrossRefGoogle Scholar
  68. 42(a).
    C. Altona, A. J. Härtel, C. S. M. Olsthoorn, H. P. M. de Leeuw and C. A. G. Haasnoot, “Nuclear Magnetic Resonance in Molecular Biology”, B. Pullman, ed., Jerus. Symp. Series Vol. 11, p. 87, Reidel, Dordrecht, Holland (1978).CrossRefGoogle Scholar
  69. (b).
    J. B. Stothers, “Carbon-13 NMR Spectroscopy”, Academic Press, New York (1972)Google Scholar
  70. 43.
    F. A. L. Anet, “13C NMR at High Magnetic Fields”, “Topics in Carbon-13 Spectroscopy”, G. C. Levy, ed.. Vol. 1, p. 209, Wiley, New York (1974).Google Scholar
  71. 44.
    S. N. Rosenthal and J. H. Fendler, “13c nmR Spectroscopy in Macromolecular Systems of Biochemical Interest”, in: “Advances in Physical Organic Chemistry”, V. Gold and D. Bethell,eds, Vol. 13, p. 280, Academic Press, New York (1976).Google Scholar
  72. 45.
    R. A. Komoroski, I. R. Peat and G. C. Levy, “13c Nim Studies of Polymers”, in: “Topics in Carbon-13 Spectroscopy”, G.C. Levy, ed.. Vol. 2, p. 180, Wiley, New York (1976).Google Scholar
  73. 46.
    J. Feeney, “The Application of 13C NMR Spectroscopic Techniques to Biological Problems”, “New Techniques in Biophysics and Cell Biology”, R. H. Pain and B. J. Smith, eds. Vol. 2, p. 287, Wiley, New York (1975).Google Scholar
  74. 47(a).
    R. L. Rill, P. R. Hilliard, J. T. Bayley and G. C. Levy, J. Am. Chem. Soc. 102:418 (1980).CrossRefGoogle Scholar
  75. (b).
    J. G. Tompson and P. F. Agris, Nucl. Acids Res. 7:765 (1979)CrossRefGoogle Scholar
  76. 48.
    J. G. Tompson, F. Hayashi, J. V. Paukstelis, R. N. Loeppky and P. F. Agris, Biochemistry 18:2079 (1979).CrossRefGoogle Scholar
  77. 49.
    P. F. Agris and P. G. Schmidt, Nucl. Acids Res. 8:2085 (1980).CrossRefGoogle Scholar
  78. 50(a).
    P. G. Schmidt, J. G. Tompson and P. F. Agris, Nucl. Acids Res. 8:643 (1980).CrossRefGoogle Scholar
  79. (b).
    M. P. Schweizer, W. D. Hamill, I. J. Walkiw, W. J. Horton and D. M. Grant, Nucl. Acids Res. 8:2075 (1980)CrossRefGoogle Scholar
  80. 51(a).
    W.D. Hamill, D.M. Grant, W. J. Horton, R. Lundquist and S. Dickman, Am. Chem. Soc. 98:1276 (1976).CrossRefGoogle Scholar
  81. (b).
    S. Yokoyama, K. M. J. Usuki, Z. Yamaizumi, S. Nishimura and T. Myazawa, FEBS Lett. 119:77 (1980)CrossRefGoogle Scholar
  82. 52.
    C. J. Chang and C. G. Lee, Arch. Biochem. Biophys. 176:801 (1976).CrossRefGoogle Scholar
  83. 53.
    Consult Tables 7 and 8 in Ref. 44.Google Scholar
  84. 54.
    H. H. Mantsch and I. C. P. Smith, Biochem. Biophys. Res. Commun. 46:808 (1972).CrossRefGoogle Scholar
  85. 55(a).
    J. L. Alderfer and P. O. P. Ts’o, Biochemistry 16:2410 (1977).CrossRefGoogle Scholar
  86. (b).
    C. Giessner-Prettre and B. Pullman, J. Theor. Biol. 27:87 (1970)CrossRefGoogle Scholar
  87. (c).
    C. Giessner-Prettre, B. Pullman, P. N. Borer, L. S. Kan and P. O. P. Ts’o, Biopolymers 15:2277 (1976)CrossRefGoogle Scholar
  88. (d).
    C. Giessner-Prettre and B. Pullman, Biochem. Biophys. Res. Commun. 70:578 (1976);CrossRefGoogle Scholar
  89. (e).
    C. Giessner-Prettre and B. Pullman, idem, J. Theor. Biol. 65:171 (1977)CrossRefGoogle Scholar
  90. 56.
    F. Ribas-Prado and C. Giessner-Prettre, J. Struct. 76:81 (1981).Google Scholar
  91. 57(a).
    D.B. Arter and P. G. Schmidt, Nucl. Acids Res. 3:1437 (1976).Google Scholar
  92. (b).
    C. W. Haigh, “Annual Reports on NMR Spectroscopy”, F. Mooney, ed.. Vol. 4, p. 311, Academic Press, New York (1971)Google Scholar
  93. 58.
    P. Diehl, H. Kellerhals and E. Lustig, in: “NMR: Basic Principles and Progress”, P. Diehl, E. Fluck and R. Kösfeld, eds. Vol. 6, p. 1, Springer, Heidelberg (1972).Google Scholar
  94. 59.
    A. de Marco, J. Magn. Reson. 26:527 (1977).CrossRefGoogle Scholar
  95. 60.
    D. H. Live and S. I. Chan, Org. Magn. Reson. 5:275 (1973).CrossRefGoogle Scholar
  96. 61.
    A. J. Härtel and C. Altona, unpublished.Google Scholar
  97. 62.
    P. G. Schmidt and E. B. Edelheit, Biochemistry 30:79 (1981).CrossRefGoogle Scholar
  98. 63(a).
    P. H. Bolton and D. R. Kearns, Biochim. Biophys. Acta 517:329 (1978).Google Scholar
  99. (b).
    V. Sanchez, A. G. Redfield, P. D. Johnston and J. Tropp, Proc. Natl. Acad. Sci. USA. 77:5659 (1980)ADSCrossRefGoogle Scholar
  100. 64.
    P. D. Johnston and A. G. Redfield, Biochemistry 20:1147 (1981).CrossRefGoogle Scholar
  101. 65.
    C. A. G. Haasnoot, J. H. J. den Hartog, J. F. M. de Rooij, J. H. van Boom and C. Altona, Nature (London) 281:235 (1979). Note that the authors’ names were mutilated in this paper because of an editorial error after proofs were returned.ADSCrossRefGoogle Scholar
  102. 66.
    C. A. G. Haasnoot, J. H. J. den Hartog, J. F. M. de Rooij, J. H. van Boom, and C. Altona, Nucl. Acids Res. 8:169 (1980).CrossRefGoogle Scholar
  103. 67(a).
    Y. P. Wong, D. R. Kearns, B. R. Reid and R. G. Shulman, J. Mol. Biol. 72:725 (1972)CrossRefGoogle Scholar
  104. (b).
    D. R. Kearns, D. Patel and R. G. Shulman, Nature (London) 229:338 (1971)ADSCrossRefGoogle Scholar
  105. (c).
    D. R. Kearns, D. Patel, R. G. Shulman, and T. Yamane, J. Biol. 61:265 (1971)CrossRefGoogle Scholar
  106. (d).
    D. R. Kearns, and R. G. Shulman, Acc. Ghem. Res. 7:33 (1974)CrossRefGoogle Scholar
  107. (e).
    D.R. Kearns, in: “Progress in Nucleic Acids Research and Molecular Biology”, W. Cohn, ed.. Vol. 18, p. 91, Academic Press, New York (1976)Google Scholar
  108. 68.
    R. G. Shulman, C. W. Hilbers, D. R. Kearns, B. R. Reid and Y. P. Wong, J. Mol. Biol. 78:57 (1973).CrossRefGoogle Scholar
  109. 69(a).
    G. T. Robillard, C. E. Tarr, F. Vosman and B. R. Reid, Biochemistry 16:5261 (1977).CrossRefGoogle Scholar
  110. (b).
    J. Dadok and R. F. Sprecher, J. Magn. Reson. 13:243 (1974)CrossRefGoogle Scholar
  111. 70(a).
    R. Gupta, J. Ferretti and E. D. Becker, J. Magn. Reson. 13:275 (1974).CrossRefGoogle Scholar
  112. (b).
    A. G. Redfield, S. D. Kunz and E. K. Ralph, J. Magn. Reson. 19:114 (1975)CrossRefGoogle Scholar
  113. (c).
    A. G. Redfield, “NMR: Basic Principles and Progress”, P. Diehl, E. Fluck and R. Kösfeld, eds, Vol. 13, p. 137, Springer, HeidelbergGoogle Scholar
  114. 71(a).
    A. G. Redfield and R. Gupta, J. Ghem. Phys. 54:1418 (1971); Adv. Magn. Reson. 5:81 (1971).ADSCrossRefGoogle Scholar
  115. (b).
    P. Djohnston and A. G. Redfield, Nucl. Acids Res. 4:3599 (1977)CrossRefGoogle Scholar
  116. (c).
    P. D. Johnston and A. G. Redfield, Nucl. Acids Res. 5:3913 (1978)CrossRefGoogle Scholar
  117. (d).
    P. D. Johnston and A. G. Redfield, in: “Transfer RNA Monograph”, J. Abelson, P. R. Schimmel and D. Soll, eds, p. 191, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1979)Google Scholar
  118. 72.
    P. D. Johnston, N. Figuera and A. G. Redfield, Proc. Natl. Acad. Sci. USA, 76:3130 (1979).ADSCrossRefGoogle Scholar
  119. 73(a).
    R. E. Hurd and B. R. Reid, J. mi. Biol. 142:181 (1980)CrossRefGoogle Scholar
  120. (b).
    G. Quigley, N. Seeman, A. Wang, F. Suddath and A. Rich, Nucl. Acids Res. 2:2329 (1975)CrossRefGoogle Scholar
  121. (c).
    A. Jack, J. Ladner and A. Klug, J. Mol. Biol. 108:619 (1976)CrossRefGoogle Scholar
  122. (d).
    J. L. Sussman and S.-H. Kim, Biochem. Biophys. Res. Commun. 68:89 (1976)CrossRefGoogle Scholar
  123. (e).
    J. Sussman, S. Holbrook, R. W. Warrant, G. Church and S.-H. Kim, J. Mol. Biol. 123:607 (1978)CrossRefGoogle Scholar
  124. 74.
    C. D. Stout, H. Mizuno, S. T. Rao, P. Swaminathan, J. Rubin, T. Brennan and M. Sundaralingam, Acta Cryst. B 34:1529 (1978).CrossRefGoogle Scholar
  125. (b).
    P. H. Bolton and D. R. Kearns, in: “Biological Magnetic Resonance”, L. J. Berliner and J. Ruben, eds, Vol. 1, p. 91, Plenum, New York (1978)Google Scholar
  126. (c).
    G. T. Robillard and B. R. Reid, in: “Biological Applications of Magnetic Resonance”, R. G. Shulman, ed., p. 45, Academic Press, New York (1979)Google Scholar
  127. (d).
    P. R. Schimmel and A. G. Redfield, Ann. Rev. Biophys. Bioeng. 9:181 (1980)CrossRefGoogle Scholar
  128. 75(a).
    G. T. Robillard, “NMR in Biology”, R. A. Dwek, I. D. Campbell, R. E. Richards and R. J. P. Williams, eds, p. 201, Academic Press, New York (1977).Google Scholar
  129. (b).
    D. R. Lightfoot, K. L. Wong, D. R. Kearns, B. R. Reid and R. G. Shulman, J. Biol. 78:71 (1973)CrossRefGoogle Scholar
  130. 76(a).
    R. G. Shulman, W. Hilbers, Y. P. Wong, K. L. Wong, D. R. Lightfoot, R. Reid and D. R. Kearns, Proc. Natl. Acad. Sci. USA, 70:2042 (1973).ADSCrossRefGoogle Scholar
  131. (b).
    S.-H. Kim, F. L. Suddath, G. J. Quigley, A. McPherson, J. S. Sussman, H. A. J. Wang, N. C. Seeman and A. Rich, Science 185:435 (1974)ADSCrossRefGoogle Scholar
  132. 77(a).
    J. D. Robertus, J. E. Ladner, J. T. Finch, D. Rhodes, S. R. Brown, B. F. C. Clark and A. Klug, Nature (London) 250:546 (1974).ADSCrossRefGoogle Scholar
  133. (b).
    B. R. Reid, N. S. Ribero, G. Gould, G. T. Robillard, W. Hilbers and R. G. Shulman, Proc. Natl. Acad. Sei. USA, 72:2049 (1975)ADSCrossRefGoogle Scholar
  134. 78(a).
    B. R. Reid and G. T. Robillard, Nature (London) 262:424 (1975).CrossRefGoogle Scholar
  135. (b).
    W. E. Daniel and M. Cohn, Proc. Natl. Acad. Sei. USA, 72:2582 (1975)ADSCrossRefGoogle Scholar
  136. 79(a).
    W. E. Daniel and M. Cohn, Biochemistry 15:3917 (1976).CrossRefGoogle Scholar
  137. (b).
    B. R. Reid, N. S. Ribero, L. McCollum, J. Abbate and R. E. Hurd, Biochemistry 16:2086 (1977)CrossRefGoogle Scholar
  138. 80(a).
    B. R. Reid and R. E. Hurd, Acc. Chem. Res. 10:396 (1977).CrossRefGoogle Scholar
  139. (b).
    P. H. Bolton, C. R. Jones, D. Bastedo-Lerner, K. L. Wong and D. R. Kearns, Biochemistry 15:4370 (1976)CrossRefGoogle Scholar
  140. 81.
    P. H. Bolton and D. R. Kearns, Nature (London) 262:423 (1976).ADSCrossRefGoogle Scholar
  141. 82(a).
    L. Kan and P. O. P. Ts’o, Nucl. Acids Res. 4:1633 (1977).CrossRefGoogle Scholar
  142. (b).
    B. R. Reid, L. McCollum, N. S. Ribero, J. Abbate and R. E. Hurd, Biochemistry 18:3996 (1979)CrossRefGoogle Scholar
  143. (c).
    R. E. Hurd and B. R. Reid, Biochemistry 18:4005 (1979)CrossRefGoogle Scholar
  144. (d).
    R. E. Hurd, E. Azhderian and B. R. Reid, Biochemistry 18:4012 (1979)CrossRefGoogle Scholar
  145. 83(a).
    R. E. Hurd and B. R. Reid, Biochemistry 18:4017 (1979).CrossRefGoogle Scholar
  146. (b).
    K. L. Wong, P. H. Bolton and D. R. Kearns, Biochim. Biophys. Acta 383:464 (1975).Google Scholar
  147. 84.
    K. L. Wong, D. R. Kearns, W. Wintermeer and H. Zachau, Biochim. Biophys. Acta 395:1 (1975).Google Scholar
  148. 85.
    A. Jack, J. E. Ladner, D. Rhodes, R. S. Brown and A. Klug, J. Biol. 111:315 (1977).CrossRefGoogle Scholar
  149. 86.
    J. Boyle, G. T. Robillard and S.-H. Kim, J. Biol. 139:601 (1980).CrossRefGoogle Scholar
  150. 87(a).
    C. E. Johnson and F. A. Bovey, J. Chem. Phys. 29:1012 (1958).ADSCrossRefGoogle Scholar
  151. (b).
    C. W. Haigh and R. B. Mallion, Mol. Phys. 22:955 (1971)ADSCrossRefGoogle Scholar
  152. 88.
    R. B. Mallion, in: “Nuclear Magnetic Resonance in Molecular Biology”, B. Pullman, ed., p. 183, Reidel, Dordrecht, Holland, (1978).CrossRefGoogle Scholar
  153. 89.
    G. T. Robillard, C. E. Tarr, F. Vosman and H. J. C. Berendsen, Nature (London) 262:363 (1976), and Ref. 74d. J. A. Pople, J. Chem. Phys. 24:1111 (1956).ADSCrossRefGoogle Scholar
  154. 90.
    R. J. Abraham, in: “Nuclear Magnetic Resonance in Molecular Biology”, B. Pullman, ed., p. 461, Reidel, Dordrecht, Holland, (1978).CrossRefGoogle Scholar
  155. 91.
    D. M. Crothers, C. W. Hilbers and R. G. Shulman, Proc. Natl. Acad. 170:2899 (1973).ADSCrossRefGoogle Scholar
  156. 92.
    G. T. Robillard, C. Tarr, F. Vosman and J. Sussman, Biophys. Chem. 6:291 (1977).CrossRefGoogle Scholar
  157. 93.
    S. Arnott, in: “Progress in Biophysics and Molecular Biology”, J. A. V. Butler and D. Noble, eds, Vol. 22, p. 179, Pergamon, Oxford (1971).Google Scholar
  158. 94.
    S. R. Holbrook, J. L. Sussman, R. W. Warrant and S.-H. Kim, J. Viol. Biol. 123:631 (1978).Google Scholar
  159. 95(a).
    R. Wing, H. R. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura and R. E. Dickerson, Nature (London) 287:755 (1980)ADSCrossRefGoogle Scholar
  160. (b).
    R. E. Dickerson and H. R. Drew, J. Mol. Biol, submitted, and private commun. to Prof. J. H. van Boom.Google Scholar
  161. 96.
    S. Arnott and D. W. L. Hukins, Biochem. Biophys. Res. Commun. 47:1504 (1972).CrossRefGoogle Scholar
  162. 97(a).
    L. S. Kan, P. O. P. Ts’o, M. Sprinzl, F. van der Haar and F. Cramer, Biochemistry 16:3143 (1977)CrossRefGoogle Scholar
  163. (b).
    P. Davanloo, M. Sprinzl and F. Cramer, Biochemistry 18:3189 (1979).CrossRefGoogle Scholar
  164. 98.
    R. V. Kastrup and P. G. Schmidt, Nucl. Acids Res. 5:257 (1978).CrossRefGoogle Scholar
  165. 99.
    D. B. Davies, “Conformations of Nucleic Acids”, in: “Progress in Nuclear Magnetic Resonance Spectroscopy”, J. W. Emsley, J. Feeney and L. H. Sutcliffe, eds. Vol. 12, p. 135, Pergamon, Oxford (1978).Google Scholar
  166. 100.
    C. Altona, H. J. Koeners, J. R. de Jager, J. H. van Boom and G. van Binst, Recl. Trav. Chim. Pays-Bas 93:169 (1974).CrossRefGoogle Scholar
  167. 101.
    C. Altona, J. H. van Boom, J. R. de Jager, H. J. Koeners and G. van Binst, Nature (London) 247:558 (1974).ADSCrossRefGoogle Scholar
  168. 102.
    C. Altona, “Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions”, M. Sundaralingam and S. T. Rao, eds, p. 163, University Park Press, Baltimore (1975). Note that the spectrum in Fig. 1 is of mp, as is correctly stated in the text.Google Scholar
  169. 103.
    C. Altona and M. Sundaralingam, J. Chem. Soc. 95:2333 (1973).CrossRefGoogle Scholar
  170. 104.
    N. S. Kondo and S. S. Danyluk, Biochemistry 15:756 (1976).CrossRefGoogle Scholar
  171. 105.
    C.-H. Lee and I. Tinoco, Biochemistry 16:5403 (1977).CrossRefGoogle Scholar
  172. 106.
    C. Altona, J. H. van Boom and A. G. Haasnoot, Eur. J. Biochem. 71:557 (1976).CrossRefGoogle Scholar
  173. 107.
    F. E. Evans and R. H. Sarma, Nature (London) 263:567 (1976).ADSCrossRefGoogle Scholar
  174. 108.
    C.-H. Lee and I. Tinoco, Biophys. Chem. 11:283 (1980).CrossRefGoogle Scholar
  175. 109.
    F. A. A. M. de Leeuw, Thesis Leiden, in preparation.Google Scholar
  176. 110.
    A. J. Härtel, G. Wille-Hazeleger, J. H. van Boom and C. Altona, Nucl. Acids. Res. 9:1405 (1981).CrossRefGoogle Scholar
  177. 111.
    J.-R. Mellema, C. A. G. Haasnoot, J. H. van Boom and C. Altona, Biochim. Biophys. Acta, in press; J.-R. Mellema, this workshop.Google Scholar
  178. 112(a).
    W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys. 64:2229 (1976)ADSCrossRefGoogle Scholar
  179. (b).
    J. Jeener, B. H. Meier, P. Bachman and R. R. Ernst, J. Chem. Phys. 71:4546 (1979);ADSCrossRefGoogle Scholar
  180. (c).
    R. Freeman and G. A. Morris, Bull. Magn. Reson. 1:5 (1979).Google Scholar
  181. 113(a).
    K. Nagayama, K. Wüthrich, P. Bachman and R. R. Ernst, Biochem. Biophys. Res. Commun. 78:99 (1977)CrossRefGoogle Scholar
  182. (b).
    A. Kumar, G. Wagner, R. R. Ernst and K. Wüthrich, Biochem. Biophys. Res. Commun. 96:1156 (1980).CrossRefGoogle Scholar
  183. 114(a).
    K. Nagayama, K. Wüthrich and R. R. Ernst, Biochem. Biophys. Res. Commun. 90:305 (1979)CrossRefGoogle Scholar
  184. (b).
    K. Nagayama, A. Kumar, K. Wüthrich and R. R. Ernst, J. Magn. Reson. 40:321 (1980).CrossRefGoogle Scholar
  185. 115(a).
    K. Nagayama and K. Wüthrich, Eur. J. Biochem. 114:365 (1981)CrossRefGoogle Scholar
  186. (b).
    G. Wagner, A. Kumar and K. Wüthrich, Eur.J. Biochem. 114:375 (1981).CrossRefGoogle Scholar
  187. 116.
    M. S. Broido and D. R. Kearns, J. Magn. Reson. 41:496 (1980).CrossRefGoogle Scholar
  188. 117.
    A. D. Bain, R. A. Bell, J. R. Everett and D. W. Hughes, Can. J. Chem. 58:1947 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Cornelis Altona
    • 1
  1. 1.Gorlaeus Laboratory of the UniversityRA LeidenThe Netherlands

Personalised recommendations