Advertisement

Magnetic Resonance Probes of Cells

  • Ian C. P. Smith
  • Roxanne Deslauriers
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)

Abstract

Over the past decade there has been a revolution in magnetic resonance. At present it is possible to study a wide variety of NMR parameters of intact, live cells, tissue, and in some cases, organs or specific regions of whole bodies. These studies are possible on a time scale that is biologically reasonable. The aim of this chapter is to present an overview of the methods, illustrated by selective examples, and a reasonably thorough, but by no means comprehensive, bibliography.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Spin Label Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. Hubbell and H.M. McConnell, Orientation and motion of amphiphilic spin labels in membranes, Proc. Natl. Acad. Sci. U.S. 64:20 (1969).Google Scholar
  2. 2.
    H. Schneider and I. C. P. Smith, A study of the structural integrity of spin-labelled proteins in some fractions of human erythrocyte ghosts, Biochim. Biophys. Acta 219:73 (1970).CrossRefGoogle Scholar
  3. 3.
    I. C. P. Smith, The spin label method, in #x0022;Biological Applica tions of Electron Spin Resonance#x0022;, H. M. Swartz, J. R. Bolton and D. C. Borg, eds., John Wiley and Sons, New York (1972).Google Scholar
  4. 4.
    L. J. Berliner, ed., #x0022;Spin Labelling Theory and Applications#x0022;, Academic Press, New York (1976).Google Scholar
  5. 5.
    J. Seelig, Anisotropic motion in liquid crystalline structures, Chapt. 10 in ref. 4, 1976.Google Scholar
  6. 6.
    I. C. P. Smith and K. W. Butler, Oriented lipid systems as model membranes, Chapt. 11 in ref. 4, 1976.Google Scholar
  7. 7.
    O. H. Griffith and P. C. Jost, Lipid spin labels in biological membranes, Chapt. 12 in ref. 4, 1976.Google Scholar
  8. 8.
    H. M. McConnell, Molecular motion in biological membranes, Chapt. 13 in ref. 4, 1976.Google Scholar
  9. 9.
    A. D. Keith, M. Sharnoff and G. E. Cohn, A summary and evaluation of spin labels as probes for biological membrane structures, Biochim. Biophys. Acta 300:379 (1973).Google Scholar
  10. 10.
    S. Schreier, C. F. Polnaszek and I. C. P. Smith, Spin labelsin membranes: problems in practice, Biochim. Biophys. Acta 515:375 (1978).Google Scholar
  11. 11.
    M. G. Taylor and I. C. P. Smith, The fidelity of response by nitroxide spin probes to changes in membrane organization: the condensing effect of cholesterol, Biochim. Biophys. Acta 599:140 (1980).CrossRefGoogle Scholar
  12. 12.
    M. G. Taylor and I. C. P. Smith, The reliability of nitroxidespin probes in reporting membrane properties: a comparison of nitroxide- and deuterium-labelled steroids. Biochemistry (in press, 1981).Google Scholar
  13. 13.
    D. Chapman, Nuclear magnetic resonance spectroscopic studies of biological membranes, Ann. N. Y. Acad. Sci. 195:175 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    A. L. Y. Lau and S. I. Chan, Voltage-induced formation of alamethecin pores in lecithin bilayer vesicles. Biochemistry 15:2551 (1976).CrossRefGoogle Scholar
  15. 15.
    N. O. Petersen and S. I. Chan, More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657 (1977).CrossRefGoogle Scholar
  16. 16.
    A. G. Lee, N. J. M. Birdsall and J. C. Metcalfe, Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1H nuclear magnetic resonance. Biochemistry 12:1650 (1973).CrossRefGoogle Scholar
  17. 17.
    G. Lindblom, H. Wennerström, G. Arvidson and B. Lindman, Lecithin translational diffusion studied by pulsed nuclear magnetic resonance, Biophys. J. 16:1287 (1976).CrossRefGoogle Scholar
  18. 18.
    H. L. Kantor and J. H. Prestegard, Fusion of phosphatidylcholine bilayer vesicles: role of free fatty acid. Biochemistry 17: 3592 (1978).CrossRefGoogle Scholar
  19. 19.
    A. L. MacKay, E. E. Burnell, C. P. Nichols, G. Weeks, M. Bloom and M. I. Valic, Effect of viscosity on the width of the methylene proton magnetic resonance line in sonicated phospholipid bilayer vesicles, FEBS Lett. 88:97 (1978).CrossRefGoogle Scholar
  20. 20.
    T. H. Fischer and G. C. Levy, Electron and proton magnetic resonance studies of the effect of rhodopsin incorporation on molecular motion in dimyristoylphosphatidylcholine bilayers, Chem. Phys. Lipids 28:7 (1981).CrossRefGoogle Scholar
  21. 21.
    G. W. Feigenson and P. R. Meers, 1H NMR study of valinomycin. conformation in a phospholipid bilayer. Nature 283:313 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    A. G. Lee, N. J. H. Blrdsall and J. C. Metcalfe, Nuclear magnetic relaxation and the biological membrane. Methods in Membrane Biology 2;1 (1974).CrossRefGoogle Scholar
  23. 23.
    A. G. Lee, N. J. M. Birdsall, J. C. Metcalfe, G. B. Warren and G. C. K. Roberts, A determination of the mobility gradient in lipid bilayers by 13C magnetic resonance, Proc. R. Soc. Lond. B. 193:253 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    N. J. M. Birdsall, D. J. Ellar, A. G. Lee, J. C. Metcalfe and G. B. Warren,13C-enriched phosphatidylethanolamines from Escherichia coli, Biochim. Biophys. Acta 380:344 (1975).Google Scholar
  25. 25.
    I. C. P. Smith, A. P. Tulloch, G. W. Stockton, S. Schreier, A. Joyce, K. W. Butler, Y. Boulanger, B. Blackwell and L. Bennett, Determination of membrane properties at the molecular level by carbon-13 and deuterium magnetic resonance, Ann. N. Y. Acad. Sci. 308:8 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    A. Joyce and I. C. P. Smith, Carbon-13 nuclear magnetic resonance studies of bacterial membranes enriched via biosynthetic pathways. Microbiology 1979, p. 5.Google Scholar
  27. 27.
    M. F. Brown, J. Seelig and U. Häberlen, Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements, J. Chem. Phys. 70:5045 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    J. D. Robinson, N. J. M. Birdsall, A. G. Lee and J. C. Metcalfe, 13C and 1H nuclear magnetic relaxation measurements of the lipids of sarcoplasmic reticulum membranes. Biochemistry 11:2903 (1972).CrossRefGoogle Scholar
  29. 29.
    R. E. London, V. H. Kollman and N. A. Matwiyoff, 13C Fourier transform nuclear magnetic resonance studies of fractionated Candida utilis membranes. Biochemistry 14:5492 (1975).CrossRefGoogle Scholar
  30. 30.
    E. O. Stejskal, J. Schaefer and R. A. McKay, High-resolution, slow-spinning magic-angle carbon-13 NMR, J. Magn. Res. 25: 569 (1977).CrossRefGoogle Scholar
  31. 31.
    C. A. Fyfe, J. R. Lyerla, W. Volksen and C. S. Yannoni, High resolution carbon-13 nuclear magnetic resonance studies of polymers in the solid state. Aromatic polyesters. Macromolecules 12:757 (1979).ADSGoogle Scholar
  32. 32.
    S. J. Opella, M.H. Frey and T. A. Cross, Detection of individual carbon resonances in solid proteins, Amer. Chem. Soc. 101:5856 (1979).CrossRefGoogle Scholar
  33. 33.
    R. A. Haberkorn, J. Herzfeld and R. G. Griffin, High resolution 13P and 13C nuclear magnetic resonance spectra of unsonicated model membranes, Amer. Chem. Soc. 100:1296 (1978).CrossRefGoogle Scholar
  34. 34.
    K. Koga and Y. Kanezawa, Dynamical structure of phosphatidyl choline molecules in single bilayer vesicles observed by nitrogen-14 nuclear magnetic resonance. Biochemistry 19: 2779 (1980).CrossRefGoogle Scholar
  35. 35.
    D. J. Siminovitch, M. Ranee and K. R. Jeffrey, The use of wide line 14N nitrogen NMR as a probe in model membranes, FEES Lett. 112:79 (1980).CrossRefGoogle Scholar
  36. 36.
    C. S. Irving and A. Lapldot, The dynamic structures of the Escherichia coli cell envelope as probed by 14N nuclear magnetic resonance spectroscopy, Biochim. Biophys. Acta 470:251 (1977).CrossRefGoogle Scholar
  37. 37.
    J. Seelig, 13P Nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta 515;105 (1978).Google Scholar
  38. 38.
    P. R. Cullis and B. De Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399 (1979).Google Scholar
  39. 39.
    H. U. Galley, W. Niederberger and J. Seelig, Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry 14:3647 (1975).CrossRefGoogle Scholar
  40. 40.
    R. Skarjune and E. Oldfield, Physical studies of cell surface and cell membrane structure. Determination of phospholipid head group organization by deuterium and phosphorus nuclear magnetic resonance spectroscopy. Biochemistry 18:5903 (1979).CrossRefGoogle Scholar
  41. 41.
    R. F. Campbell, E. Meirovitch and J. H. Freed, Slow-motional NMR line shapes for very anisotropic rotational diffusion. Phosphorus-31 NMR of phospholipids, J. Phys. Chem. 83:525Google Scholar
  42. 42.
    M. B. Jackson and J. M. Sturtevant Phase transitions of the purple membranes of Halobacterium halobium, Biochemistry 17:911 (1978).CrossRefGoogle Scholar
  43. 43.
    H. Degani, D. Bach, A. Danon, H. Garty, M. Eisenbach and S. R. Caplan, Phase transition of the lipids of Halobacterium halobium, in #x0022;Energetics and Structure of Halophilic Organisms#x0022;, S. R. Caplan and N. Ginzburg, eds., Elsevier- North Holland, Amsterdam, pp. 225–232 (1978)Google Scholar
  44. 44.
    I. Ekiel, D. Marsh, B. W. Smallbone, M. Kates and I. C. P. Smith, The state of the lipids in the purple membrane of Halobacterium cutirubrum as seen by 13P NMR, Biochem. Biophys. Res. Commun. (1981, in press).Google Scholar
  45. 45.
    B. De Kruijff, G. A. Morris and P. R. Cullis, Application of 13P-NMR saturation transfer techniques to investigate phospholipid motion and organization in model and biological membranes, Biochim. Biophys. Acta 598:206 (1980).CrossRefGoogle Scholar
  46. 46.
    H. C. Jarrell, R. A. Byrd, R. Deslauriers, I. Ekiel and I. C. P. Smith, Characterization of the phase behaviour of phosphono- lipids in model and biological membranes by 13P NMR, Biochim. Biophys. Acta (1981, in press).Google Scholar
  47. 47.
    H. Sait, S. Schreier-Muccillo and I. C. P. Smith, High resolution deuterium magnetic resonance — an approach to the study of molecular organization in biological membranes and model systems, FEBS Lett. 33:281 (1973).CrossRefGoogle Scholar
  48. 48.
    J. Seelig and A. Seelig, Deuterium magnetic resonance studies of phospholipid bilayers, Biochem. Biophys. Res. Commun. 57:406 (1974).CrossRefGoogle Scholar
  49. 49.
    G. W. Stockton, C. F. Polnaszek, L. C. Leitch, A. P. Tulloch and I. C. P. Smith, A study of mobility and order in model membranes using 1H NMR relaxation rates and quadrupole splittings of specifically-deuterated lipids, Biochem. Biophys. Res. Commun. 60:844 (1974).CrossRefGoogle Scholar
  50. 50.
    G. W. Stockton, K. G. Johnson, K. W. Butler, C. F. Polnaszek, R. Cyr and I. C. P. Smith, Molecular order in Acholeplasma laidlawii membranes as determined by deuterium magnetic resonance of biosynthetically-incorporated specifically- labelled lipids, Biochim. Biophys. Acta 401:535 (1975).CrossRefGoogle Scholar
  51. 51.
    A. Seelig and J. Seelig, Bilayers of dipalmitoyl-3-sn- phosphatidylcholine. Conformational differences between the fatty acyl chains, Biochim. Biophys. Acta 406:1 (1975).CrossRefGoogle Scholar
  52. 52.
    G. W. Stockton, C. F. Polnaszek, A. P. Tulloch, F. Hasan and I. C. P. Smith, Molecular motion and order in single- bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium magnetic resonance study of specifically labelled lipids. Biochemistry 15:954 (1976).CrossRefGoogle Scholar
  53. 53.
    J. Seelig and H. U. Gaily, Investigation of phosphatidyl-ethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15:5199 (1976).CrossRefGoogle Scholar
  54. 54.
    G. W. Stockton and I. C. P. Smith, A deuterium magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes, Chem. Phys. Lipids 17:251 (1976).CrossRefGoogle Scholar
  55. 55.
    A. Seelig and J. Seelig, Effect of a single eis double bond on the structure of a phospholipid bilayer. Biochemistry 16:45 (1977).CrossRefGoogle Scholar
  56. 56.
    G. W. Stockton, K. G. Johnson, K. W. Butler, A. P. Tulloch, Y. Boulanger, I. C. P. Smith, J. H. Davis and M. Bloom, Deuterium NMR study of lipid organization in Acholeplasma laidlawii membranes. Nature 269:267 (1977).ADSCrossRefGoogle Scholar
  57. 57.
    H. H. Mantsch, H. Saito and I. C. P. Smith, Deuterium magnetic resonance, applications in chemistry, physics and biology. Prog. NMR Spec. 11:211 (1977).CrossRefGoogle Scholar
  58. 58.
    J. Seelig, Deuterium magnetic resonance: theory and applications to lipid membranes. Quart. Rev. Biophys. 10:353 (1977).CrossRefGoogle Scholar
  59. 59.
    I. C. P. Smith, Organization and dynamics of membrane lipids as determined by magnetic resonance spectroscopy. Can. Biochem. 57:1 (1979).CrossRefGoogle Scholar
  60. 60.
    J. Seelig and A. Seelig, Lipid conformation in model membranes and biological membranes. Quart. Rev. Biophys. 13:19 (1980).CrossRefGoogle Scholar
  61. 61.
    D. M. Rice, J. C. Hsung, T. E. King and E. Oldfield, Proteinlipid interactions. High field deuterium and phosphorus nuclear magnetic resonance spectroscopic investigations of the cytochrome oxidase-phospholipid interaction and the effects of cholate. Biochemistry 18:5885 (1979).CrossRefGoogle Scholar
  62. 62.
    S. Y. Kang, R. A. Kinsey, S. Rajan, H. S. Gutowsky, H. C. Gabridge and E. Oldfield, Protein-llpid interactions in biological and model membrane systems, J.- Biol. Chem. 256:1155 (1981).Google Scholar
  63. 63.
    C. P. Nichol, J. H. Davis, G. Weeks and M. Bloom, Quantitative study of the fluidity of Escherichia coli membranes using deuterium magnetic resonance, Biochemistry 19:451 (1980).CrossRefGoogle Scholar
  64. 64.
    M. I. Valic, H. Gorrissen, R. J. Cushley and M. Bloom, Deuterium magnetic resonance study of cholesteryl esters in membranes. Biochemistry 18:854 (1979).CrossRefGoogle Scholar
  65. 65.
    I. G. P. Smith, The states of the lipids in biological membranes as visualized by deuterium NMR, Bull. Magn. Res. (1981, in press).Google Scholar
  66. 66.
    H. W. Spiess, Rotation of molecules and nuclear spin relaxation #x0022;NMR Basic Prinicples and Progress#x0022;, P. Diehl, E. Fluck and R. Kösfeld, eds. Springer Verlag, Berlin, pp. 55–214 (1978).Google Scholar
  67. 67.
    S. Y. Kang, H. S. Gutowsky and E. Oldfield, Spectroscopic studies of specifically deuterium labelled membrane systems. Nuclear magnetic resonance investigation of protein-lipid interaction in Escherichia coli membranes. Biochemistry 18:3268 (1979).CrossRefGoogle Scholar
  68. 68.
    J. H. Davis, G. P. Nichol, G. Weeks and M. Bloom, Study of the cytoplasmic and outer membranes of Escherichia coli by deuterium magnetic resonance. Biochemistry 18:2103 (1979).CrossRefGoogle Scholar
  69. 69.
    J. H. Davis, B. Maraviglia, G. Weeks and D. V. Godin, Bilayer rigidity of the erythrocyte membrane, 1H NMR of a perdeuterated palmitic acid probe, Biochim. Biophys. Acta 550:362 (1979).CrossRefGoogle Scholar
  70. 70.
    J. Seelig, L. Tamm, L. Hymel and S. Fleischer, Deuterium and phosphorus NMR and fluorescence depolarization studies of functional reconstituted sarcoplasmic reticulum membrane vesicles, Biochemistry (1981, in press).Google Scholar
  71. 71.
    H. U. Gaily, G. Pluschke, P. Overath and J. Seelig, Structure of Escherichia coli membranes. Fatty acyl chain order parameters of inner and outer membranes and derived liposomes. Biochemistry 19:1638 (1980).CrossRefGoogle Scholar
  72. 72.
    I. G. P. Smith, K. W. Butler, A. P. Tulloch, J. H. Davis and M. Bloom, The properties of gel state lipid in membranes Acholeplasma laidlawii as observed by deuterium magnetic resonance, FEBS Lett. 100:57 (1979).CrossRefGoogle Scholar
  73. 73.
    J. H. Davis, M. Bloom, K. W. Butler and I. G. P. Smith, The temperature dependence of molecular order and the influence of cholesterol in Acholeplasma laidlawii membranes, Biochim. Biophys. Acta 597:477 (1980).CrossRefGoogle Scholar
  74. 74.
    M. Ranee, K. R. Jeffrey, A. P. Tulloch, K. W. Butler and I. G. P. Smith, Orientational order of unsaturated lipids in the membranes of Acholeplasma laidlawii as observed by 1H NMR, Biochim. Biophys. Acta 600:245 (1980).CrossRefGoogle Scholar
  75. 75.
    A. Wieslander, J. Ulmius, G. Lindblom and K. Fontell, Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and X-ray diffraction, Biochim. Biophys. Acta 512;241 (1978).CrossRefGoogle Scholar
  76. 76.
    J. R. Silvius, N. Mak and R. N. McElhaney, Lipid and protein composition and thermotropic lipid phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii Biochim. Biophys. Acta 597:199 (1980).CrossRefGoogle Scholar
  77. 77.
    D. Rice and E. Oldfield, Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphospha- tidylcholine and gramicidin A#x0027;, Biochemiltry 18:3272 (1979).CrossRefGoogle Scholar
  78. 78.
    J. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic and T. P. Higgs, Quadrupole echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42:390 (1976).ADSCrossRefGoogle Scholar
  79. 79.
    H. C. Jarrell, R. A. Byrd and I. C. P. Smith, Analysis of the composition of mixed lipid phases by the moments of 1H NMR spectra, Biophys. J. (1981, iii press).Google Scholar
  80. 80.
    M. F. Brown, Deuterium relaxation and molecular dynamics in lipid bilayers, J. Magn. 351:203 (1979).Google Scholar
  81. 81.
    T. H. Oldfield, Restricted rotational isomerization in polymethylene chains, J. Amer. Chem. Soc. 102:7377 (1980).CrossRefGoogle Scholar
  82. 82.
    A. P. Tulloch, Synthesis of deuterium and carbon-13 labelled lipids, Chem. Phys. Lipids 24:391 (1979).CrossRefGoogle Scholar
  83. 83.
    T. Ogino, Y. Arata and S. Fujiwara, Proton correlation nuclear magnetic resonance study of metabolic regulation and pyruvate transport in anaerobic Escherichia coli cells, Biochemistry 19:3684 (1980).CrossRefGoogle Scholar
  84. 84.
    A. J. Daniels, J. Krebs, B. A. Levine, P. E. Wright and R. J. P. Williams, The proton NMR spectra of whole organs, in #x0022;NMR in Biology#x0022;, R. A. Dwek, I. D. Campbell, R. E. Richards and R. J. P. Williams, eds., Acad. Press, London, pp. 277–287.Google Scholar
  85. 85.
    E. R. Andrew, NMR imaging of intact biological systems, Phil. Trans. R. Lond. B. 289:471 (1980).ADSCrossRefGoogle Scholar
  86. 86.
    R. Damadian, Field focusing NMR (FONAR) and the formation of chemical images in man, Phil. Trans. R. Soc. Lond. B 289: 489 (1980).CrossRefGoogle Scholar
  87. 87.
    W. S. Moore and G. N. Holland, Experimental considerations in implementing a whole body multiple sensitive point nuclear magnetic resonance imaging system, Phil. Trans. R. Soc. Lond. B 289:511 (1980).ADSCrossRefGoogle Scholar
  88. 88.
    J. Mallard, J. M. S. Hutchison, W. A. Edelstein, C. R. Ling, M. A. Foster and G. Johnson, In vivo NMR imaging in medicine; the Aberdeen approach both physical and biological, Phil. Trans. R. Soc. B 289: 519 (1980).CrossRefGoogle Scholar
  89. 89.
    P. Mansfield, P. G. Morris, R. J. Ordidge, I. L. Pykett, V. Bangert and R. E. Coupland, Human whole body imaging and detection of breast tumors by NMR, Phil, Trans. R. Soc. Lond. B 289:503 (1980).ADSCrossRefGoogle Scholar
  90. 90.
    W. M. M. J. Bovee, J. H. N. Creyghton, K. W. Getreuer, D. Korbee, S. Lobregt, J. Smidt, R. A. Wind, J. Lindeman, L. Smid and H. Posthuma, NMR relaxation and images of human breast tumors in vitro, Phil. Trans. R. Soc. Lond. B. 289:535 (1980).ADSCrossRefGoogle Scholar
  91. 91.
    S. M. Cohen, S. Ogawa and R. G. Shulman, 13C NMR studies of gluconeogenesis in rat liver cells: utilization of labelled glycerol by cells from euthyroid and hyperthyroid rats, Proc. Natl. Acad. Sci. U.S.A. 76:1663 (1979).CrossRefGoogle Scholar
  92. 92.
    S. M. Cohen, R. G. Shulman and A. C. McLaughlin, Effects of ethanol on alanine metabolism in perfused mouse liver studied by 13C NMR, Proc. Natl. Acad. Sci. U.S.A. 76:4808 (1979).ADSCrossRefGoogle Scholar
  93. 93.
    S. M. Cohen and R. G. Shulman, 13C NMR studies of gluconeo genesis in rat liver suspensions and perfused mouse liver, Phil. Trans. R. Soc. Lond. B 289:407 (1980).ADSCrossRefGoogle Scholar
  94. 94.
    J. A. den Hollander, T. R. Brown, K. Ugurbil and R. G. Shulman, 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells, Proc. Natl. Acad. Sci. U.S.A. 76:6096 (1979).ADSCrossRefGoogle Scholar
  95. 95.
    T. R. Brown, J. A. den Hollander, R. G. Shulman and K. Ugurbil, 13C NMR studies of glycolysis in suspensions of Escherichia coli cells, in #x0022;Frontiers of Biological Energetics, Vol. II: Electrons to Tissues#x0022;, P. L. Dutton, J. S. Leigh and A. Scarpa, eds. Academic Press, New York, pp. 1365–1370 (1978).Google Scholar
  96. 96.
    K. Ugurbil, R. G. Shulman and T. R. Brown, High-resolution 31P and 13C nuclear magnetic resonance studies of Escherichia coli cells vivo, in #x0022;Biological Applications of Magnetic Resonance#x0022;, R. G. Shulman, ed., Acad. Press, New York, pp. 537–589 (1977).Google Scholar
  97. 97.
    R. S. Norton, Identification of mollusc metabolites by natural abundance 13C NMR studies of whole tissue and tissue homo- genates. Comp. Bioehem. Physiol. 63B:67 (1979).ADSGoogle Scholar
  98. 98.
    R. Deslauriers, H. Jarrell, R. A. Byrd and I. C. P. Smith, Observation by 13C NMR of metabolites in differentiating amoeba — Trehalose storage in encysted Acanthamoeba castellanii, FEBS Lett. 118:185 (1980).CrossRefGoogle Scholar
  99. 99.
    D. G. Gadian, G. K. Radda, R. E. Richards and P. J. Stanley, 31P NMR in living tissue: the road from a promising to an important tool in biology, in #x0022;Biological Applications of Magnetic Resonance#x0022;, R. G. Shulman, ed., Acad. Press, New York, pp. 463–535 (1977).Google Scholar
  100. 100.
    D. P. Hollis, Phosphorus NMR of cells, tissues and organelles, in #x0022;Biological Magnetic Resonance, Vol. 2#x0022;, L. J. Berliner and J. Reuben, eds. Plenum Press, New York, pp. 1–44 (1980).CrossRefGoogle Scholar
  101. 101.
    P. J. Seeley, P. A. Sehr, D. G. Gadian, P. B. Garllck and G. K. Radda, Phosphorus NMR in living tissue, in #x0022;NMR in Biology#x0022;, R. A. Dwek, I. D. Campbell, R. E. Richards and R.J.P. Williams, eds., Acad Press, London, pp. 247–275 (1975).Google Scholar
  102. 102.
    J. Dawson, D. G. Gadian and D. R. Wilkie, Studies of living contracting muscle by 13P nuclear magnetic resonance, in #x0022;NMR in Biology#x0022;, R. A. Dwek, I. D. Campbell, R. E. Richards and R. J. P. Williams, eds., Acad. Press, London, pp. 289–322 (1977).Google Scholar
  103. 103.
    C. T. Burt, S. M. Cohen and M. Barany, Analysis of intact tissue with 13P NMR, Ann. Rev. Biophys. Bioeng. 8:1 (1979).CrossRefGoogle Scholar
  104. 104.
    M. K. Battersby, P. M. Garlick, P. J. Seeley, P. A. Sehr and G. K. Radda, Phosphorus nuclear magnetic resonance studies of living tissue, #x0022;Biomolecular Structure and Function#x0022;, P. F. Agris, ed., Acad. Press, New York, pp. 175–193 (1978).Google Scholar
  105. 105.
    R. G. Shulman, T. R. Brown, K. Ugurbil, S. Ogawa, S. M. Cohen, and J. A. den Hollander, Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205:160 (1979).ADSCrossRefGoogle Scholar
  106. 106.
    J. J. H. Ackerman, T. H. Grove, G. C. Wong, D. G. Gadian and G. K. Radda, Mapping of metabolites in whole animals by 31p NMR using surface coils. Nature 283:167 (1980).ADSCrossRefGoogle Scholar
  107. 107.
    D. I. Hoult, S. J. W. Busby, D. G. Gadian, G. K. Radda, R. E. Richards and P. J. Seeley, Observation of tissue metabolites using 31p nuclear magnetic resonance. Nature 252:285 (1974).ADSCrossRefGoogle Scholar
  108. 108.
    R. B. Moon and J. H. Richards, Determination of intracellular pH by magnetic resonance, J. Biol. Chem. 248:7276 (1973).Google Scholar
  109. 109.
    R. J. Labotka and G. R. Honig, 31P NMR spectroscopy of erythrocytes in congenital hemolytic anemias: detection of heterogeneous erythrocyte populations and quantification of intracellular 2,3-diphosphoglycerate, Amer. J. Hematology 9:55 (1980).CrossRefGoogle Scholar
  110. 110.
    Y. F. Lam, A. K. L. C. Lin and C. Ho, A phosphorus-31 nuclear magnetic resonance investigation of intracellular environment in human normal and sickle cell blood. Blood 54:196 (1979).Google Scholar
  111. 111.
    H. B. Pollard, H. Shindo, C. E. Creutz, C. J. Pazoles and J. S. Cohen, Internal pH and state of ATP in adrenergic chromaffin granules determined by 31P nuclear magnetic resonance spectroscopy, Biol. Chem. 254:1170 (1979).Google Scholar
  112. 112.
    D. Njus, P. A. Sehr, G. K. Radda, G. A. Ritchie and P. J. Seeley, Phosphorus-31 nuclear magnetic resonance studies of active translocation in chromaffin granules. Biochemistry 17:4337 (1978).CrossRefGoogle Scholar
  113. 113.
    S. J. W. Busby, D. G. Gadian, G. K. Radda, R. E. Richards and P. J. Seeley, Phosphorus nuclear magnetic resonance studies of compartmentation in muscle, Biochem. 170:103 (1978).Google Scholar
  114. 114.
    S. M. Cohen, S. Ogawa, H. Rottenberg, P. Glynn, T. Yamane, T. R. Brown, R. G. Shulman and J. R. Williamson, 31P nuclear magnetic resonance studies of isolated rat liver cells. Nature 273:554 (1978).ADSCrossRefGoogle Scholar
  115. 115.
    K. Yoshizaki, H. Nishikawa, S. Yamada, T. Morimoto and H. Watari, Intracellular pH measurement in frog muscle by means of 1P NMR,. J. Physiol. 29:211 (1979).Google Scholar
  116. 116.
    P. A. Sehr, P. J. Bore, J. Papatheofanis and G. K. Radda, Non-destructive measurement of metabolites and tissue pH in the kidney by 31P nuclear magnetic resonance, Exp. Path. 60:632 (1979).Google Scholar
  117. 117.
    G. Navon, S. Ogawa, R. G. Shulman and T. Yamane, High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. U.S.A. 74:888 (1977).ADSCrossRefGoogle Scholar
  118. 118.
    B. Setlow and P. Stelow, Measurement of the pH within dormant and germinated bacterial spores, Proc. Natl. Acad. Sci. U.S.A. 77:2474 (1980).ADSCrossRefGoogle Scholar
  119. 119.
    J. K. Barton, J. A. den Hollander, T. M. Lee, A. MacLaughlin and R. G. Shulman, Measurement of the internal pH of yeast spores by 31P nuclear magnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 77:2470 (1980).ADSCrossRefGoogle Scholar
  120. 120.
    R. Deslauriers, R. A. Byrd, H. C. Jarrell and I. C. P. Smith, NMR studies of differentiation in Acanthamoeba castellanii, in #x0022;Non-Invasive Probes of Tissue Metabolism#x0022;, J. S. Cohen, ed., John Wiley, New York (1981, in press).Google Scholar
  121. 121.
    T. R. Brown, K. Ugurbil and R. G. Shulman, 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. U.S.A. 74:5551 (1977).ADSCrossRefGoogle Scholar
  122. 122.
    R. K. Gupta, Saturation transfer 31P NMR studies of the in tact human red blood cell, Biochim. Biophys. Acta 586:189 (1979).CrossRefGoogle Scholar
  123. 123.
    J. J. H. Ackerman, P. J. Bore, D. G. Gadian, T. H. Grove and G. K. Radda, NMR studies of metabolism in perfused organs, Phil. Trans. R. Soc. Lond. B 289:425 (1980).ADSCrossRefGoogle Scholar
  124. 124.
    R. A. Lies, J. R. Griffiths, A. N. Stevens, D. G. Gadian and R. Proteous, Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver, Biochem. J. 192:191 (1980).Google Scholar
  125. 125.
    G. Navon, S. Ogawa, R. G. Shulman and T. Yamane, 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells, Proc. Natl. Acad. Sci. U.S.A. 74:87 (1977).ADSCrossRefGoogle Scholar
  126. 126.
    T. H. Grove, J. J. H. Ackerman, G. K. Radda and P. J. Bore, Analysis of rat heart vivo by phosphorus nuclear magnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 77:299 (1980).ADSCrossRefGoogle Scholar
  127. 127.
    D. P. Hollis, Nuclear magnetic resonance of phosphorus in the perfused heart, IEEE Transactions on Nuclear Science NS-27:1250 (1980).ADSCrossRefGoogle Scholar
  128. 128.
    E. T. Fossel, H. E. Morgan and J. S. Ingwall, Measurement of changes in high-energy phosphates in the cardiac cycle using gated 31P nuclear magnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 77:3654 (1980).ADSCrossRefGoogle Scholar
  129. 129.
    M. J. Dawson, D. G. Gadian and D. R. Wilkie, Studies of the biochemistry of contracting and relaxing muscle by the use of 31P NMR in conjunction with other techniques, Phil. Trans. R. Lond. B 289:445 (1980).ADSCrossRefGoogle Scholar
  130. 130.
    P. C. Lauterbur, Progress in NMR zeugmatographic imaging, Phil. Trans. R. Soc. Lond. B 289:483 (1980).ADSCrossRefGoogle Scholar
  131. 131.
    A. Coleman and D. G. Gadian, 31P nuclear magnetic resonance studies on the developing embryos of Xenopus laevis, Eur. J. Biochem. 61:387 (1976).CrossRefGoogle Scholar
  132. 132.
    R. J. Neff and R. H. Neff, The biochemistry of amoebic encystment, #x0022;Dormancy and Survival#x0022;, Symp. Soc. Exptl. Biol., Cambridge Univ. Press, pp. 51–81 (1969).Google Scholar
  133. 133.
    R. Deslauriers, R. A. Byrd, H. C. Jarrell and I. C. P. Smith, 31P NMR studies of vegetative and encysted cells of Acanthamoeba castellanii — Observation of phosphonic acids in live cells, Eur. J. Biochem. 111:369 (1980).CrossRefGoogle Scholar
  134. 134.
    R. Deslauriers, H. C. Jarrell, R. A. Byrd and I. C. P. Smith, 31P NMR studies of metabolism in Acanthamoeba castellanii: polyphosphate release from encysted cells, Biochem. Biophys. Res. Commun. 95:1211 (1980).CrossRefGoogle Scholar
  135. 135.
    G. S. Jacob, J. Schaefer, E. O. Stejskal and R. A. McKay, Magic-angle 13N NMR study of nitrate metabolism of Neurospora crassa, Biochem. Biophys. Res. Commun. 97:1176 (1980).CrossRefGoogle Scholar
  136. 136.
    M. Shporer and M. M. Civan, Effects of temperature and field strength on the NMR relaxation times of 13Na in frog striated muscle, Biochim. Biophys. Acta 354:291 (1974).CrossRefGoogle Scholar
  137. 137.
    H. Monoi, Nuclear magnetic resonance of tissue 13Na correla tion time, Biochim. Biophys. Acta 451:604 (1976).CrossRefGoogle Scholar
  138. 138.
    M. Goldberg and H. Gilboa, Sodium exchange between two sites. The binding of sodium to halotolerant bacteria, Biochim. Biophys. Acta 538:268 (1978).CrossRefGoogle Scholar
  139. 139.
    M. M. Civan and M. Shporer, Pulsed NMR studies of from in frog striated muscle, Biochim. Biophys. Acta (1974).Google Scholar
  140. 140.
    M. M. Civan and M. Shporer, Pulsed nuclear magnetic resonance study of 17O 1D and 1H of water in frog striated muscle, Biophys. J. 15:299 (1975).CrossRefGoogle Scholar
  141. 141.
    M. Shporer and M. M. Civan, NMR study of from in human erythrocytes, Biochim. Biophys. Acta 385:81 (1975).CrossRefGoogle Scholar
  142. 142.
    R. Damadian and F. W. Cope, Potassium nuclear magnetic resonance relaxations in muscle and brain, and in normal coli and a potassium transport mutant, Physiol. Chem. Phys. 5:511 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ian C. P. Smith
    • 1
  • Roxanne Deslauriers
    • 1
  1. 1.Division of Biological SciencesNational Research CouncilOttawaCanada

Personalised recommendations