Image Reconstruction from Electron Micrographs of Macromolecular Structures

  • R. A. Crowther
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


Knowledge of the three dimensional spatial organisation of a complex biological system is generally essential, if an understanding of its working is to be achieved. The assembly of viral capsids, the functioning of a ribosome in synthesising a protein, the repetitive molecular movements generating force in muscular contraction or the operation of the various cellular organelles involved in cell division are all critically dependent on the specific structures involved. Electron microscopy provides one approach to investigating such structures and this article outlines the procedures used to reconstruct reliable two and three dimensional images from the resulting micrographs. The main emphasis however is on the sort of structural information that can be derived.


Purple Membrane Dimensional Reconstruction Nucleosome Core Histone Octamer Tomato Bushy Stunt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Crowther and A. Klug, Structural analysis of macromolecular assemblies by image reconstruction from electron micrographs, Ann. Rev. Biochem. 44:161 (1975).CrossRefGoogle Scholar
  2. 2.
    J.E. Mellema, Computer reconstruction of regular biological objects, “Computer processing of electron microscope images”, P.W. Hawkes, ed., Springer-Verlag, Berlin (1980).Google Scholar
  3. 3.
    H.P. Erickson and A. Klug, Measurement and compensation of defocussing and aberrations by Fourier processing of electron micrographs, Phil. Trans. Roy. Soc. Ser. B. 261: 105 (1971).CrossRefADSGoogle Scholar
  4. 4.
    P.N.T. Unwin, Electron microscopy of the stacked disc aggregate of tobacco mosaic virus. II. The influence of electron irradiation on the stain distribution, J. Mol. Biol. 87:657 (1974).CrossRefGoogle Scholar
  5. 5.
    R.C. Williams and H.W. Fisher, Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure, J. Mol. Biol. 52:121 (1970).CrossRefGoogle Scholar
  6. 6.
    P.N.T. Unwin and R. Henderson, Molecular structure determination by electron microscopy of unstained crystalline specimens,J. Mol. Biol. 94:425 (1975).CrossRefGoogle Scholar
  7. 7.
    R.A. Crowther, The interpretation of images reconstructed from electron micrographs of biological particles, Proc. 3rd John Innes Symp. p.15 (1976).Google Scholar
  8. 8.
    A. Klug and J.E. Berger, An optical method for the analysis of periodicities in electron micrographs, and some observations on the mechanism of negative staining, J. Mol. Biol. 10:565 (1964).CrossRefGoogle Scholar
  9. 9.
    A. Klug and D.J. DeRosier, Optical filtering of electron micrographs: reconstruction of one sided images, Nature (Lond.) 212:29 (1966).CrossRefADSGoogle Scholar
  10. 10.
    L.A. Amos and A. Klug, Image filtering by computer, Proc. 5th European Congr. on Electron Microscopy p. 580 (1972).Google Scholar
  11. 11.
    R.A. Crowther and L.A. Amos, Harmonic analysis of electron microscope images with rotational symmetry, J. Mol. Biol. 60:123 (1971).CrossRefGoogle Scholar
  12. 12.
    A. Klug and J.T. Finch, Structure of viruses of Papilloma-Polyoma type. I. Human wart virus, J. Mol. Biol. 11:403 (1965).Google Scholar
  13. 13.
    A. Klug and J.T. Finch, Structure of viruses of the Papilloma-Polyoma type. IV. Analysis of tilting experiments in the electron microscope, J. Mol. Biol. 31:1 (1968).CrossRefGoogle Scholar
  14. 14.
    D.J. DeRosier and A. Klug, Reconstruction of three dimensional structures from electron micrographs. Nature (Lond.) 217: 130 (1968).CrossRefADSGoogle Scholar
  15. 15.
    R.A. Crowther, D.J. DeRosier and A. Klug, The reconstruction of a three dimensional structure from projections and its application to electron microscopy, Proc. Roy. Soc. Lond. A. 317:319 (1970).CrossRefADSGoogle Scholar
  16. 16.
    D.J. DeRosier and A. Klug, Structure of the tubular variants of the head of bacteriophage T4 (Polyheads). I. Arrangement of subunits in some classes of polyheads, J. Mol. Biol. 65: 469 (1972).CrossRefGoogle Scholar
  17. 17.
    U.K. Laemmli, L.A. Amos and A. Klug, Correlation between structural transformation and cleavage of the major head protein of T4 bacteriophage. Cell 7:191 (1976).CrossRefGoogle Scholar
  18. 18.
    Y. Kikuchi and J. King, Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of central plug and overall assembly pathway, J. Mol. Biol. 99:695 (1975).CrossRefGoogle Scholar
  19. 19.
    R.A. Crowther, E.V. Lenk, Y. Kikuchi and J. King, Molecular reorganisation in the hexagon to star transition of the baseplate of bacteriophage T4, J. Mol. Biol. 116:489 (1977).CrossRefGoogle Scholar
  20. 20.
    R.A. Crowther, Mutants of bacteriophage T4 that produce infective fibreless particles, J. Mol. Biol. 137:159 (1980).CrossRefGoogle Scholar
  21. 21.
    L.A. Amos and A. Klug, Three dimensional image reconstructions of the contractile tail of T4 bacteriophage, J. Mol. Biol. 99:51 (1975).CrossRefGoogle Scholar
  22. 22.
    M.F. Moody, Sheath of bacteriophage T4. III. Contraction mechanism deduced from partially contracted sheaths, J. Mbl. Biol. 80:613 (1973).CrossRefGoogle Scholar
  23. 23.
    D.L.D. Caspar and A. Klug, Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 37:1 (1962).CrossRefGoogle Scholar
  24. 24.
    R.A. Crowther, Procedures for three dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs, Phil. Trans. Roy. Soc. Ser. B. 261:221 (1971).CrossRefADSGoogle Scholar
  25. 25.
    R.A. Crowther, L.A. Amos and J.T. Finch, Three dimensional image reconstructions of bacteriophages R17 and f2, J. Mol. Biol. 98:631 (1975).CrossRefGoogle Scholar
  26. 26.
    S.C. Harrison, A.J. Olson, C.E. Schutt, F.K. Winkler and G. Bricogne, Tomato bushy stunt virus at 2.9 A resolution, Nature (Lond.) 276:368 (1978).CrossRefADSGoogle Scholar
  27. 27.
    R.D. Kornberg, Structure of chromatin, Ann. Rev. Biochem. 46: 931 (1977).CrossRefGoogle Scholar
  28. 28.
    J.T. Finch, L.C. Lutter, D. Rhodes, R.S. Brown, B. Rushton, M. Levitt and A. Klug, Structure of nucleosome core particles of chromatin. Nature (Lond.) 269:29 (1977).CrossRefADSGoogle Scholar
  29. 29.
    A. Klug, D. Rhodes, J. Smith, J.T. Finch and J.O. Thomas, A low resolution structure for the histone core of the nucleosome. Nature (Lond.) 287:509 (1980).CrossRefADSGoogle Scholar
  30. 30.
    G.A. Bentley, J.T. Finch and A. Lewit-Bentley, Neutron diff raction studies on crystals of nucleosome cores using contrast variation, J. Mol. Biol. 145:771 (1981).CrossRefGoogle Scholar
  31. 31.
    P.N.T. Unwin, Attachment of ribosome crystals to intracellular membranes, J. Mol. Biol. 132:69 (1979).CrossRefGoogle Scholar
  32. 32.
    W. Kllhlbrandt and P.N.T. Unwin, Structural analysis of stained and unstained two dimensional ribosome crystals, in “Electron microscopy at molecular dimensions”, W. Baumeister and W. Vogell, eds, Springer-Verlag, Berlin (1980).Google Scholar
  33. 33.
    W. Kuhlbrandt, Structural studies on crystalline eukaryotic ribosomes. Ph.D. Thesis, University of Cambridge. (1981).Google Scholar
  34. A. Klug, Image analysis and reconstruction in the electron microscopy of biological macromolecules, Chemica Scripta 14:245 (1978–9).Google Scholar
  35. 35.
    R. Henderson and P.N.T. Unwin, Three dimensional model of purple membrane obtained by electron microscopy. Nature (Lond.) 257:28 (1975).CrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. A. Crowther
    • 1
  1. 1.Medical Research CouncilLaboratory of Molecular BiologyCambridgeEngland

Personalised recommendations