X-ray Fiber Diffraction

  • D. A. Marvin
  • C. Nave
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


X-ray fibre diffraction is used to study the molecular structure of long assemblies of identical subunits. Such an assembly will normally have minimum energy when all subunits have the same environment. This means that subunits in elongated assemblies follow a helix of pitch P in which subunits are related to one another by integer multiples of a unit rise p parallel to the helix axis and a unit twist p/P around this axis. Both the experimental techniques and the methods of data analysis lie somewhere between single-crystal diffraction and solution scattering, and fibre diffraction draws on both these techniques.


Tobacco Mosaic Virus Electron Density Distribution Layer Line Liquid Crystal Phase Helix Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.R. Stokes, The theory of X-ray fibre diagrams, Prog. Biophvs. 5: 140 (1955).Google Scholar
  2. 2.
    A. Klug, F.H.C. Crick, and H.W. Wyckoff, Diffraction by helical structures. Acta Cryst. 11:199 (1958).CrossRefGoogle Scholar
  3. 3.
    G.N. Ramachandran, Analysis of the X-ray diffraction pattern of helical structures, Proc. Indian Acad. Sci. 52: 240 (1960).MathSciNetGoogle Scholar
  4. 4.
    R.E. Dickerson, X-ray analysis and protein structure, in,: “;The Proteins,”; H. Neurath, ed., vol. II, p.603, Academic Press, New York (1964).Google Scholar
  5. 5.
    K.C. Holmes and D.M. Blow, “;The Use of X-ray Diffraction in the Study of Protein and Nucleic Acid Structure,”; Interscience, New York (1966).Google Scholar
  6. 6.
    B.K. Vainshtein, “;Diffraction of X-rays by Chain Molecules,”; Elsevier, Amsterdam (1966).Google Scholar
  7. 7.
    A. Elliott, X-ray diffraction by synthetic polypeptides, in: “;Poly-∞-Amino Acids,”; G.D. Fasman, ed., p.1. Marcel Dekker, New York (1967).Google Scholar
  8. 8.
    L.E. Alexander, “;X-ray Diffraction Methods in Polymer Science,”; Wiley, New York (1969).Google Scholar
  9. 9.
    M. Kakudo and N. Kasai, “;X-ray Diffraction by Polymers,”; Elsevier, Amsterdam (1972).Google Scholar
  10. 10.
    R.D.B. Eraser and T.P. MacRae, “;Conformation in Fibrous Proteins,”; Academic Press, New York (1973).Google Scholar
  11. 11.
    Y. Mitsui and Y. Takeda, X-ray diffraction studies of helical biopolymers and biological structures. Adv. Biophvs. 12: 1 (1979).Google Scholar
  12. 12.
    A.D. French and K.H. Gardner, eds., “;Fiber Diffraction Methods,”; American Chemical Society, Washington (1980).Google Scholar
  13. 13.
    P.G. de Gennes, “;The Physics of Liquid Crystals,”; Clarendon Press, Oxford (1974).Google Scholar
  14. 14.
    A. Blumstein, ed., “;Liquid Crystalline Order in Polymers,”; Academic Press, New York (1978).Google Scholar
  15. 15.
    E.T. Samulski, Liquid crystalline order in polypeptides, in: “;Liquid Crystalline Order in Polymers,”; A. Blumstein, ed., p.167, Academic Press, New York (1978).Google Scholar
  16. 16.
    C. Robinson, Liquid-crystalline structures in polypeptide solutions. Tetrahedron 13: 219 (1961).CrossRefGoogle Scholar
  17. 17.
    J. Gregory and K.C. Holmes, Methods of preparing orientated tobacco mosaic virus sols for X-ray diffraction, J. Mol. Biol. 13: 796 (1965).CrossRefGoogle Scholar
  18. 18.
    J. Lapointe and D.A. Marvin, Filamentous bacterial viruses VIII. Liquid crystals of fd, Mol. Cryst. and Liquid Cryst. 19: 269 (1973).CrossRefGoogle Scholar
  19. 19.
    M.H.L. Pryce and F.C. Frank, The spherulitic texture, Faraday Soc. Discuss. No. 25: 41 (1958).Google Scholar
  20. 20.
    R. Langridge, H.R. Wilson, C.W. Hooper, M.H.F. Wilkins, and L.D. Hamilton, The molecular configuration of deoxyribonucleic acid I. X-ray diffraction study of a crystalline form of the lithium salt, J. Mol. Biol. 2: 19 (1960).CrossRefGoogle Scholar
  21. 21.
    W. Fuller, F. Hutchinson, M. Spencer, and M.H.F. Wilkins, Molecular and crystal structures of double-helical RNA I. An X-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA model, J. Mol. Biol. 27: 507 (1967).CrossRefGoogle Scholar
  22. 22.
    D.A. Marvin, X-ray diffraction and electron microscope studies on the structure of the small filamentous bacteriophage fd, J. Mol. Biol. 15: 8 (1966).CrossRefGoogle Scholar
  23. 23.
    F.T. Hong, D. Mauzerall, and A. Mauro, Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field, Proc. Natl. Acad. USA 68: 1283 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    G. Maret and K. Dransfeld, Macromolecules and membranes in high magnetic fields, Phvsica. 86–88B: 1077 (1977).ADSGoogle Scholar
  25. 25.
    G. Maret, J. Torbet, E. Senechal, A. Domard, M. Rinaudo, and H. Milas, Polyelectrolytes in high magnetic fields, in: “;Nonlinear Behaviour of Molecules, Atoms and Ions in Electric, Magnetic or Electromagnetic Fields,”; L. Neel, ed., p. 477, Elsevier, Amsterdam (1979).Google Scholar
  26. 26.
    D.L. Worcester, Structural origins of diamagnetic anisotropy in proteins, Proc. Natl. Acad. Sci. USA 75: 5475 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    E.T. Samulski and A.V. Tobolsky, Distorted ∞-helix for poly (-benzyl L-glutamate) in the nematic solid state, Biopolvmers. 10: 1013 (1971).CrossRefGoogle Scholar
  28. 28.
    M. Chabre, X-ray diffraction studies of retinal rods I. Structure of the disc membrane, effect of illumination, Biochim. biophvs. Acta, 382: 322 (1975).CrossRefGoogle Scholar
  29. 29.
    J. Torbet and G. Maret. Fibres of highly oriented Pfl bacteriophage produced in a strong magnetic field, J. Mol. Biol. 134: 843 (1979).CrossRefGoogle Scholar
  30. 30.
    C. Nave, R.S. Brown, A.G. Fowler, J.E. Ladner, D.A. Marvin, S.W. Provencher, A. Tsugita, J. Armstrong, and R.N. Perham, Pfl filamentous bacterial virus: Xrray fibre diffraction analysis of two heavy-atom derivatives, J. Mol. Biol, in press.Google Scholar
  31. 31.
    M. Hogan, N. Dattagupta, and D.M. Crothers, Transient electric dichroism of rod-like DNA molecules, Proc. Natl. Acad. Sci. USA, 75: 195 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    M. Sakamoto, T. Fujikado, R. Hayakawa, and Y. Wada, Low frequency dielectric relaxation and light scattering under AC electric field of DNA solutions, Biophvs. Chem. 11: 309 (1980).Google Scholar
  33. 33.
    T.L. Blundell and L.N. Johnson, “;Protein Crystallography,”; Academic Press, New York (1976).Google Scholar
  34. 34.
    K.C. Holmes, E. Mandelkow, and J. Harrington Leigh, The determination of the heavy atqm positions in tobacco mosaic virus from double heavy atom derivatives, Naturwiss. 59: 247 (1972).ADSCrossRefGoogle Scholar
  35. 35.
    A. Franks, X-ray optics, Prog., Oxf. 64: 371 (1977).Google Scholar
  36. 36.
    A. Elliott, The use of toroidal reflecting surfaces in X-ray diffraction cameras, J. Sci. Instrum. 42: 312 (1965).ADSCrossRefGoogle Scholar
  37. 37.
    H.E. Huxley and W. Brown, The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol. 30: 383 (1967).CrossRefGoogle Scholar
  38. 38.
    H.M. Spencer, Laboratory methods for maintaining constant humidity. International Critical Tables, 1: 67 (1926).Google Scholar
  39. 39.
    C. G. Vonk and A.P. Pijpers, The use of film methods in small- angle X-ray scattering, J. Appl. Cryst. 14: 8 (1981).CrossRefGoogle Scholar
  40. 40.
    U.W. Arndt and D.J. Gilmore, X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources, J. Appl. Cryst. 12: 1 (1979).CrossRefGoogle Scholar
  41. 41.
    R. Hamlin, C. Cork, A. Howard, C. Nielsen, W. Vernon, D. Matthews, and Ng. H. Xuong, Characteristics of a flat multiwire area detector for protein crystallography, Appl. Cryst. 14: 85 (1981).CrossRefGoogle Scholar
  42. 42.
    R.E. Franklin and R.G. Gosling, The structure of sodium thymonucleate fibres. II. The cylindrically symmetrical Patterson function, Acta Cryst. 6: 678 (1953).CrossRefGoogle Scholar
  43. 43.
    D.A. Marvin, R.L. Wiseman, and E.J. Wachtel, Filamentous bacterial viruses XI. Molecular architecture of the class II (Pf1,Xf) virion, J. Mol. Biol. 82: 121 (1974).CrossRefGoogle Scholar
  44. 44.
    Y. Mitsui, The correlation between helical parameters and layer line distribution in the diffraction pattern of helical polymers. Acta Cryst. 20: 694 (1966).CrossRefGoogle Scholar
  45. 45.
    Y. Mitsui, General method of obtaining best helical parameters from the diffraction pattern. Acta Cryst. A26: 658 (1970).Google Scholar
  46. 46.
    L. Makowski, Processing of X-ray diffraction data from partially oriented specimens, J. Appl. Cryst. 11: 273 (1978).CrossRefGoogle Scholar
  47. 47.
    L. Makowski, Resolution of X-ray intensities by angular deconvolution, in: “;Fibre Diffraction Methods,”; A.D. French and K.H. Gardner, eds., p. 139, American Chemical Society, Washington (1980).CrossRefGoogle Scholar
  48. 48.
    R.D.B. Fräser, T.P. MacRae, A. Miller, and R.J. Rowlands, Digital processing of fibre diffraction patterns, J. Appl. Cryst. 9: 81 (1976).CrossRefGoogle Scholar
  49. 49.
    S.W. Provencher and J. Glockner, Users guide for CIN- A Fortran routine for the rapid approximation of disorientation integrals in fiber diffraction. Technical Report EMBL-DAO1, EMBL, Heidelberg (1980).Google Scholar
  50. 50.
    E.J. Wachtel, R.L. Wiseman, W.J. Pigram, D.A. Marvin, and L. Manuelidis, Filamentous bacterial viruses XIII. Molecular structure of the virion in projection, J. Mol. Biol. 88: 601 (1974).CrossRefGoogle Scholar
  51. 51.
    D. Meader, E.D.T. Atkins, M. Elder, P.A. Machin, and M. Pickering, AXIS: A semi-automated X-ray intensity and d- spacing analyser for fiber diffraction patterns, in: “;Fiber Diffraction Methods,”; A.D. French and K.H. Gardner, eds., p. 113, American Chemical Society, Washington (1980)CrossRefGoogle Scholar
  52. 52.
    W. Cochran, F.H.C. Crick, and V. Vand, The structure of synthetic polypeptides. I. The transform of atoms on a helix, Acta Cryst. 5: 581 (1952).CrossRefGoogle Scholar
  53. 53.
    E. Mandelkow, K.C. Holmes, and Ü. Gallwitz, A new helical aggregate of tobacco mosaic virus protein, J. Mol. Biol. 102: 265 (1976).CrossRefGoogle Scholar
  54. 54.
    R. Freeman and K.R. Leonard, Comparative mass measurement of biological macromolecules by scanning transmission electron microscopy, J.. Microscopy. in press.Google Scholar
  55. 55.
    R.E. Franklin and K.C. Holmes, Tobacco mosaic virus: Application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Cryst. 11: 213 (1958).CrossRefGoogle Scholar
  56. 56.
    R. Langridge, D.A. Marvin, W.E. Seeds, H.R. Wilson, C.W. Hooper, M.H.F. Wilkins, and L.D. Hamilton, The molecular configuration of deoxyribonucleic acid II. Molecular models and their Fourier transforms, J. Mol. Biol. 2: 38 (1960).CrossRefGoogle Scholar
  57. 57.
    S. Arnott, M.H.F. Wilkins, W. Fuller, and R. Langridge, Molecular and crystal structures of double-helical RNA III. An 11-fold molecular model and comparison of the agreement between the observed and calculated three-dimensional diffraction data for 10- and 11-fold models, J. Mol. Biol. 27: 535 (1967).CrossRefGoogle Scholar
  58. 58.
    S. Arnott, M.H.F. Wilkins, W. Fuller, and R. Langridge, Molecular and crystal structures of double-helical RNA II. Determination and comparison of diffracted intensities for the c< and J9 crystalline forms of reovirus RNA and their interpretation in terms of groups of three RNA molecules, J. Mol. Biol. 27: 525 (1967).CrossRefGoogle Scholar
  59. 59.
    L. Makowski and D.L.D. Caspar, Filamentous bacteriophage Pfl has 27 subunits in its axial repeat, in.: “;The Single- Stranded DNA Phages,”; D.T. Denhardt, D. Dressier, and D.S. Ray, eds., p. 627, Cold Spring Harbor Laboratory, Cold Spring Harbor (1978).Google Scholar
  60. 60.
    M. Feughelman, R. Langridge, W.E. Seeds, A.R. Stokes, H.H. Wilson, C.W. Hooper, M.H.F. Wilkins, R.K. Barclay, and L.D. Hamilton, Molecular structure of deoxyribose nucleic acid and nucleoprotein. Nature. 175: 834 (1955).ADSCrossRefGoogle Scholar
  61. 61.
    R.E. Franklin and A. Klug, The nature of the helical groove on the tobacco mosaic virus particle, Biochim. biophvs. Acta. 19: 403 (1956).Google Scholar
  62. 62.
    D.A. Marvin, M. Spencer, M.H.F. Wilkins, and L.D. Hamilton, The molecular configuration of deoxyribonucleic acid III. X-ray diffraction study of the C form of the lithium salt, J. Mol. Biol. 3: 547 (1961).CrossRefGoogle Scholar
  63. 63.
    A. Elliott and B.R. Malcolm, Chain arrangement and sense of the ∞-helix in poly-L-alanine fibres, Proc. Rov. Soc. Lond. A249: 30 (1959).ADSCrossRefGoogle Scholar
  64. 64.
    F.H.C. Crick, The packing of ∞-helices: Simple coiled-coils. Acta Cryst. 6: 689 (1953).CrossRefGoogle Scholar
  65. 65.
    D.L.D. Caspar and K.C. Holmes, Structure of Dahlemense strain of tobacco mosaic virus: A periodically deformed helix, J. Mol. Biol. 46: 99 (1969).CrossRefGoogle Scholar
  66. 66.
    C. Nave, A.G. Fowler, S. Malsey, D.A. Marvin, H. Siegrist, and E.J. Wachtel, Macromolecular structural transitions in Pfl filamentous bacterial virus. Nature, 281: 232 (1979).ADSCrossRefGoogle Scholar
  67. 67.
    C.R. Calladine, Design requirements for the construction of bacterial flagella, J. theor. Biol. 57: 469 (1976).CrossRefGoogle Scholar
  68. 68.
    A.C. Bloomer, J.N. Champness, G. Bricogne, R. Staden, and A. Klug, Protein disk of tobacco mosaic virus at 2.8 2 resolution showing the interactions within and between subunits. Nature. 276: 362 (1978).ADSCrossRefGoogle Scholar
  69. 69.
    P.Y. Chou and G.D. Fasman, Empirical predictions of protein conformation, Ann. Rev. Biochem. 47: 251 (1978).CrossRefGoogle Scholar
  70. 70.
    G. Nemethy and H.A. Scheraga, Protein folding. Quart. Rev. Biophvs. 10: 239 (1977).CrossRefGoogle Scholar
  71. 71.
    G.E. Schulz and R.H. Schirmer, “;Principles of Protein Structure,”; Springer-Verlag, New York (1979).CrossRefGoogle Scholar
  72. 72.
    M.J.E. Sternberg and J.M. Thornton, Prediction of protein structure from amino acid sequence. Nature. 271: 15 (1978).ADSCrossRefGoogle Scholar
  73. 73.
    F.E. Cohen, M.J.E. Sternberg, and W.R. Taylor, Analysis and prediction of protein;9-sheet structures by a combinatorial approach. Nature, 285.: 378 (1980).ADSCrossRefGoogle Scholar
  74. 74.
    J. Janin and C. Chothia, Packing of ∞-helices onto β-pleated sheets and the anatomy of ∞/β proteins, J. Mol. Biol. 143: 95 (1980).CrossRefGoogle Scholar
  75. 75.
    K.C. Holmes, Protein-RNA interactions during TMV assembly, J. Supramol. Struct. 12: 305 (1979).CrossRefGoogle Scholar
  76. 76.
    D.A. Marvin, Structure of the filamentous phage virion, in: “;The Single-Stranded DNA Phages,”; D.T. Denhardt, D. Dressier, and D.S. Ray, eds., p. 583, Cold Spring Harbor Laboratory, Cold Spring Habor (1978).Google Scholar
  77. 77.
    D.J. Struik, “;Differential Geometry,”; Addison-Wesley, Reading (1961).MATHGoogle Scholar
  78. 78.
    F.H.C. Crick and J.D. Watson, Virus structure: general principles, in: “;The Nature of Viruses”; (Ciba Foundation Symposium), G.E.W. Wolstenholme and E.G.P. Millar, eds., p.5, Churchill, London (1957).Google Scholar
  79. 79.
    W. Bode, J. Engel, and D. Winklmair, A model of bacterial flagella based on small-angle X-ray scattering and hydrodynamic data which indicate an elongated shape of the flagellin protomer, Eur. J. Biochem. 26: 313 (1972).CrossRefGoogle Scholar
  80. 80.
    S. Lowey, Myosin: Molecule and filament, in: “;Subunits in Biological Systems”; Part A, S.N. Timasheff and G.D. Fasman, eds., p.201, Marcel Dekker, New York (1971).Google Scholar
  81. 81.
    H.B. Stuhrmann, Interpretation of small-angle scattering functions of dilute solutions and gases. A representation of the structures related to a one-particle-scattering function. Acta Cryst. A26: 297 (1970).Google Scholar
  82. 82.
    C.W. Gray., G.G. Kneale., K.R. Leonard., H. Siegrist, and D.A. Marvin, A nucleoprotein complex in bacteria infected with Pfl filamentous virus 1. Identification and electron microscopic analysis, Virologv. in press.Google Scholar
  83. 83.
    D.A. Marvin and E.J. Wachtel, Structure and assembly of filamentous bacterial viruses. Nature, 253: 19 (1975).ADSCrossRefGoogle Scholar
  84. 84.
    L. Makowski, D.L.D. Caspar, and D.A. Marvin, Filamentous bacteriophage Pfl structure determined at 7 2 resolution by refinement of models for the ∞-helical subunit, J. Mol. Biol. 140: 149 (1980).CrossRefGoogle Scholar
  85. 85.
    W. Folkhard, K.R. Leonard, S. Malsey, D.A. Marvin, J. Dubochet, A. Engel, M. Achtman, and R. Helmuth, X-ray diffraction and electron microscope studies on the structure of bacterial F-pili, J. Mol. Biol. 130: 145 (1979).CrossRefGoogle Scholar
  86. 86.
    W. Folkhard, D.A. Marvin, T.H. Watts, and W. Paranchych, Structure of polar pili from Pseudomonas aeruginosa strains K and O, J. Mol. Biol, in press.Google Scholar
  87. 87.
    R. Langridge, T.E. Ferrin, I.D. Kuntz, and M.L. Connolly, Real-time color graphics in studies of molecular interactions. Science. 211: 661 (1981).ADSCrossRefGoogle Scholar
  88. 88.
    Y. Nakashima, R.L. Wiseman, W. Königsberg, and D.A. Marvin, Primary structure and sidechain interactions of Pfl filamentous bacterial virus coat protein. Nature. 253: 68 (1975).ADSCrossRefGoogle Scholar
  89. 89.
    D.A. Marvin and E.J. Wachtel, Structure and assembly of filamentous bacterial viruses, Phil. Trans. R. Soc. Lond. B276: 81 (1976).ADSGoogle Scholar
  90. 90.
    R. Diamond, A mathematical model-building procedure for proteins. Acta Cryst. 21: 253 (1966).CrossRefGoogle Scholar
  91. 91.
    J. Hermans Jr. and J.E. McQueen Jr., Computer manipulation of macromolecules with the method of local change, Acta Cryst. A30: 730 (1974).Google Scholar
  92. 92.
    R.D.B. Fräser, T.P. MacRae, and E. Suzuki, An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules, J. Appl. Cryst. 11: 693 (1978).CrossRefGoogle Scholar
  93. 93.
    Phillips, S.E.V., Structure and refinement of oxymyoglobin at 1.6 8 resolution, J. Mol. Biol. 142: 531 (1980).CrossRefGoogle Scholar
  94. 94.
    B. Lee and F.M. Richards, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55: 379 (1971).CrossRefGoogle Scholar
  95. 95.
    F.M. Richards, The interpretation of protein structures: Total volume, group volume distributions and packing density, J. Mol. Biol. 82: 1 (1974).CrossRefGoogle Scholar
  96. 96.
    S. Arnott and A.J. Wonacott, The refinement of the crystal and molecular structures of polymers using X-ray data and stereochemical constraints. Polymer, 7: 157 (1966).CrossRefGoogle Scholar
  97. 97.
    G. Gupta, M. Bansal, and V. Sasisekharan, Conformational flexibility of DNA: Polymorphism and handedness, Proc. Natl. Acad. Sci. USA. 77: 6486 (1980).ADSCrossRefGoogle Scholar
  98. 98.
    J.L. Sussman, S.R. Holbrook, G.M. Church, and S.-H. Kim, A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst. A33: 800 (1977).Google Scholar
  99. 99.
    C. Chothia, Structural invariants in protein folding. Nature, 254: 304 (1975).ADSCrossRefGoogle Scholar
  100. 100.
    J. Janin, S. Wodak, M. Levitt, and B. Maigret, Conformation of amino acid side-chains in proteins, J. Mol. Biol. 125: 357 (1978).CrossRefGoogle Scholar
  101. 101.
    S.J. Opella, T.A. Cross, J.A. DiVerdi, and C.F. Sturm, Nuclear magnetic resonance of the filamentous bacteriophage fd, Biophvs. J. 10: 531 (1980).CrossRefGoogle Scholar
  102. 102.
    L. Makowski, The use of continuous diffraction data as a phase constraint. I. One-dimensional theory, J. AppI. Cryst. in press.Google Scholar
  103. 103.
    S.W. Provencher, Inverse problems in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy, Makromol. Chem. 180: 201 (1979).CrossRefGoogle Scholar
  104. 104.
    D.A. Marvin, M.H.F. Wilkins, and L.D. Hamilton, Application of Fourier synthesis technique to low-resolution fibre diffraction data: Preliminary study of deoxyribonucleic acid. Acta Cryst. 20: 663 (1966).CrossRefGoogle Scholar
  105. 105.
    G. Bricogne, Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32: 832 (1976).Google Scholar
  106. 106.
    G.A. Sim, The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetrical structures, Acta Cryst. 12: 813 (1959).CrossRefGoogle Scholar
  107. 107.
    S. Arnott, M.H.F. Wilkins, L.D. Hamilton, and R. Langridge, Fourier synthesis studies of lithium DNA Part III: Hoogsteen models, J. Mol. Biol. 11: 391 (1965).CrossRefGoogle Scholar
  108. 108.
    R.E. Franklin and R.G. Gosling, The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Cryst. 6: 673 (1953).CrossRefGoogle Scholar
  109. 109.
    S.B. Zimmerman and B.H. Pheiffer, A RNA-DNA hybrid that can adopt two conformations: An X-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers, Proc. Natl. Acad- Sci. USA, 78: 78 (1981).ADSCrossRefGoogle Scholar
  110. 110.
    S.W. Englander, N.R. Kallenbach, A.J. Heeger, J.A. Krumhansl, and S. Litwin, Nature of the open state in long polynucleotide double helices: Possibility of soliton excitations, Proc. Natl. Acad. Sci. USA. 77: 7222 (1980).ADSCrossRefGoogle Scholar
  111. 111.
    J.D. Axe, Incommensurate structures, Phil. Trans. Rov. Soc. Lond. B290: 593 (1980).ADSCrossRefGoogle Scholar
  112. 112.
    A. Klug, The design of self-assembling systems of equal units, Svmp. Int. Sqq. Cell Biol. 6: 1 (1968).Google Scholar
  113. 113.
    R.M. Macnab and M.K. Ornston, Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force, J. Mol. Biol. 112: 1 (1977).CrossRefGoogle Scholar
  114. 114.
    E.J. Wachtel, F.J. Marvin, and D.A. Marvin, Structural transition in a filamentous protein, J. Mgl. Biol. 107: 379 (1976).CrossRefGoogle Scholar
  115. 115.
    H.E. Huxley, A.R. Faruqi, J. Bordas, M.H.J. Koch, and J.R. Milch, The use of synchrotron radiation in time-resolved X- ray diffraction studies of myosin layer-line reflections during muscle contraction, Nature. 284: 140 (1980).ADSCrossRefGoogle Scholar
  116. 116.
    D.W. Banner, C. Nave, and D.A. Marvin, Structure of the protein and DNA in fd filamentous bacterial virus. Nature, 289: 814 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • D. A. Marvin
    • 1
  • C. Nave
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergFederal Republic of Germany

Personalised recommendations