The Strucure and Assembly of Simple Viruses

  • Kenneth C. Holmes
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


Viruses occur with widely differing degrees of structural complexity, ranging from the viroids, which consist, only of RNA, to complex bacteriophages which can code for a hundred gene products. The structure and assembly of the large bacteriophages has been studied with great effect by means of electron microscopy and genetics, particularly by the use of temperature sensitive mutants. At present there is not much information about this class of viruses at the atomic level although the assembly processes are already well described1. To study structure and function at the atomic level we must turn to the simpler viruses. A place of honour in the pantheon of structural molecular biology has been reserved for the plant viruses, which consist of a single strand of RNA enclosed in a protein coat. Such objects are highly symmetrical on account of the economy of design. The coats are built up by the repetitive use of one type of protein unit. Two classes of object result: the rod viruses and the so-called spherical viruses, the symmetry of which provides a nice example of the expression of platonic form at the macromolecular level.


Coat Protein Tobacco Mosaic Virus Virus Structure Tomato Bushy Stunt Virus Isomorphous Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kichuchi and J. King, Assembly of Bacteriophage T-4, J Supramol Struct, 3:24 (1975).CrossRefGoogle Scholar
  2. 2.
    D. L. D. Caspar and A. Klug, Physical Principles in the Construction of small Viruses, Cold Spring Harb, Symp, qunt, Biol, 27:1 (1962).CrossRefGoogle Scholar
  3. 3.
    J. D. Bernal and I. Fankuchen, X-ray and Crystallographic Studies of Plant Virus Preparations, J. Gen. Physiol. 25: 111 (1941).CrossRefGoogle Scholar
  4. 4.
    W. Cochran, F. H. C. Crick, and V. Vand, The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix, Acta Cryst 5:581 (1952).CrossRefGoogle Scholar
  5. 5.
    J. D. Watson, The Structure of Tobacco Mosaic Virus. I. X-ray Evidence of a Helical Arrangement of Subunits around the Longitudinal Axis. Biochim. Biophys. Acta 13:10 (1954).CrossRefGoogle Scholar
  6. 6.
    R. E. Franklin, Structure of Tobacco Mosaic Virus: Location of the Ribonucleic acid in the TMV Particle, Nature (Lond.) 177:929 (1956).ADSGoogle Scholar
  7. 7.
    D. L. D. Caspar, Structure of Tobacco Mosaic Virus: Radial Density Distribution in the TMV Particle, Nature (Lond.) 177:928 (1956).ADSCrossRefGoogle Scholar
  8. 8.
    R. E. Franklin and K. C. Holmes, Tobacco Mosaic Virus: Application of Method of Isomorphous Replacement to the Determination of the Helical Parameters and Radial Density Distribution, Acta Cryst. 11:213 (1958).CrossRefGoogle Scholar
  9. 9.
    R. E. Franklin and A. Klug, The Nature of the Helical Groove on the Tobacco Mosaic Virus Particle, Biochim. Biophys. Acta 19:403 (1956).CrossRefGoogle Scholar
  10. 10.
    H. Fraenkel-Conrat, in:“Sulphur in Proteins,” R. Benesch and R. E. Benesch, ed., Academic Press, New York (1959).Google Scholar
  11. 11.
    R. Macleod, G. J. Hills, and R. Markham, Formation of true 3- dimensional Crystals of the Tobacco Mosaic Virus Protein, Nature (Lond:) 200:932 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    J. T. Finch, R. Leberman, Y-S Chang, and A. Klug, Rotational Symmetry of the Two-turn Disk Aggregate of Tobacco Mosaic Virus Protein, Nature (Lond.) 212:349 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    A. C. Bloomer, J. N. Champness, G. Bricogne, R. Staden, and A. Klug, Protein Disk of Tobacco Mosaic Virus at 2.8 X Resolution showing the Interactions within and between the Subunits, Nature (Lond.) 276:362 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    J. N. Champness, A. C. Bloomer, G. Bricogne, P. J. G. Butler, and A. Klug. The Structure of the Protein Disk of Tobacco Mosaic Virus to 5 A Resolution, Nature (Lond.) 259:20 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    A. Jack, Direct Determination of X-ray Phases for Tobacco Mosaic Virus Protein using Non-crystallographic Symmetry, Acta Cryst. A29:545 (1973).Google Scholar
  16. 16.
    G. Bricogne, Methods and Programs for Direct Space Exploitation of Geometric Redundancies, Acta Cryst. A32:832 (1976).Google Scholar
  17. 17.
    H. G. Wittmann, Proteinanlysen von Chemisch Induzierten Mutanten des Tabacmosaikvirus, Z. Vererbungslehre 93:333 (1964).Google Scholar
  18. 18.
    R. N. Perham and J. O. Thomas, Reaction of Tobacco Mosaic Virus with a Thiol-containing Imidoester and a possible Application to X-ray Diffraction Analysis, J. Mol. Biol. 62:415 (1971).CrossRefGoogle Scholar
  19. 19.
    U. Gallwitz, L. King, and R. N. Perh, Preparation of an Isomorphous Heavy-atom Derivative of Tobacco Mosaic Virus by Chemical Modification with 4-Sulpho-phenylisothiocyanate, J. Mol. Biol. 67:257 (1974).CrossRefGoogle Scholar
  20. 20.
    R. E. Franklin and A. Klug, The Splitting of the Layer-lines in X-ray Fibre Diagrams of Helical Structures: Application to Tobacco Mosaic Virus, Acta Cryst. 8:777 (1955).CrossRefGoogle Scholar
  21. 21.
    A. Klug, F. H. C. Crick, and H. W. Wyckoff, Diffraction by Helical Structures, Acta Cryst 11:199 (1958).CrossRefGoogle Scholar
  22. 22.
    A. N Barrett, J. Barrington Leigh, K. C. Holmes, R. Leberman, E. Mandelkow, P. von Sengbusch, and A. Klug, An Electron Density Map of Tobacco Mosaic Virus at 10 A Resolution, Cold Spring Harb. Symp. quant. Biol. 36:433 (1971).CrossRefGoogle Scholar
  23. 23.
    K. C. Holmes, X-ray Diffraction Studies on Tobacco Mosaic Virus and related Substances, Ph.D. Thesis, Univ. London (1959).Google Scholar
  24. 24.
    G. J. Stubbs and R. Diamond, The Phase Problem for Cylindrically Averaged Diffraction Patterns. Solution by Isomorphous Replacement and Application to Tobacco Mosaic Virus, a Least Squares Procedure for Minimising the Error in Phases and Bessel- function Term Ratios, Acta Cryst. A31:709 (1975).Google Scholar
  25. 25.
    K. C. Holmes, G. J. Stubbs, E. Mandelkow, U. Gallwitz, Structure of Tobacco Mosaic Virus at 6.7 A Resolution, Nature (Lond.) 254:192 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    G. J. Stubbs, S. G. Warren, and K. C. Holmes, Structure of the RNA and RNA Binding Site in Tobacco Mosaic Virus from 4-A Map calculated from X-ray Fibre Diagrams, Nature (Lond.) 267: 216 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    G. Schramm, Über die Spaltung des Tabakmosaikvirus und die Wiedervereinigung der Spaltstücke zu höhermolekularen Proteinen, Z. Naturforsch. 2b:112 and 249 (1947).Google Scholar
  28. 28.
    H. Fraenkel-Conrat and R. C. Williams, Reconstitution of Active Tobacco Mosaic Virus from its Inactive Protein and Nucleic Acid Components, Proc. Natl. Acad. Sci. U.S. 41:690 (1955).Google Scholar
  29. 29.
    A. Klug and A. C. H. Durham, The Disk of TMV Protein and its Relation to the Helical and Other Modes of Aggregation, Cold Spring Harb. Symp. quant. Biol. 36:449 (1971).CrossRefGoogle Scholar
  30. 30.
    F. J. G. Butler and A. Klug, Assembly of the Particle of Tobacco Mosaic Virus from RNA and Disks of Protein, Nature New Biol. 229:47 (1971).CrossRefGoogle Scholar
  31. 31.
    E. Mandelkow, K. C. Holmes, and U. Gallwitz, A New Helical Aggregate of Tobacco Mosaic Virus Protein, J. Mol. Biol. 102:265 (1976).CrossRefGoogle Scholar
  32. 32.
    A. C. H. Durham, The Cause of Irreversible Polymerisation of Tobacco Mosaic Virus Protein, FEBS Letters 25:147 (1972).CrossRefGoogle Scholar
  33. 33.
    P. J. G. Butler, A. C. Bloomer, G. Brigogne, J. N. Champness, J. Graham, H. Guilley, A. Klug, and D. Zimmern, Tobacco Mosaic Virus Assembly — Specificity and the Transition in Protein Structure During RNA Packaging, in:”Proceedings of the Third John Innes Symposium,” R. Markham and R. Home, eds., North- Holland-Elsevier, Amsterdam (1976).Google Scholar
  34. 34.
    D. Zimmern and P. J. G. Butler, The Isolation of Tobacco Mosaic Virus RNA Fragments Containing the Origin for Viral Assembly, Cell 11:455 (1977).CrossRefGoogle Scholar
  35. 35.
    D. Zimmern, The Nucleotide Sequence at the Origin for Assembly on Tobacco Mosaic Virus RNA, Cell 11:463 (1977).CrossRefGoogle Scholar
  36. 36.
    G. Jonard, K. E. Richards, H. Guilley, and L. Hirth, Sequence from the Assembly Nucleation Region of TMV RNA, Cell 11: 483 (1977).CrossRefGoogle Scholar
  37. 37.
    D. Zimmern and T. M.A. Wilson, Location of the Origin for Viral Reassembly on Tobacco Mosaic Virus RNA and its Relation to Stable Fragment, FEBS Letters 71:294 (1976).CrossRefGoogle Scholar
  38. 38.
    G. P Lomonossoff and P. J. G. Butler, Location and Encapsidation of the Coat Protein Cistron of Tobacco Mosaic Virus, Eur. J. Biochem. 93:157 (1979).CrossRefGoogle Scholar
  39. 39.
    T. M. Schuster, R. B. Scheele, M. L. Adams, S. J. Shire, J. J. Steckert, and M. Potschka, Studies on the Mechanism of Assembly of Tobacco Mosaic Virus, Biophys. J. 32:313 (1980).CrossRefGoogle Scholar
  40. 40.
    P. J. G. Butler, J. T. Finch, and D. Zimmern, Configuration of Tobacco Mosaic Virus RNA during Virus Assembly, Nature (Lond.) 265:217 (1977).ADSCrossRefGoogle Scholar
  41. 41.
    G. Lebeurier, A. Nicolaiff, and K. E. Richards, Inside-out Model for the Self-assembly of Tobacco Mosaic Virus, Proc. Natl. Acad. Sci. U.S. 74:149 (1977).Google Scholar
  42. 42.
    O. Jardetsky, K. Akasaka, D. Vogel, S. Morris, and K. C. Holmes, Unusual Segment Flexibility in a Region of Tobacco Mosaic Virus Coat Protein, Nature (Lend.) 273:564 (1978).ADSCrossRefGoogle Scholar
  43. 43.
    E. Mandelkow, G. J. Stubbs, and S. G. Warren, Structures of the Helical Aggregates of Tobacco Mosaic Virus Protein, Mol. Biol, (submitted for publication).Google Scholar
  44. 44.
    G. Stubbs and C. Stauffacher, Protein-RNA Interactions in Tobacco Mosaic Virus, Biophys. J. 32:244 (1980).CrossRefGoogle Scholar
  45. 45.
    T. M.A. Wilson, R. N. Perham, J. T. Finch, and P. J. G. Butler, Polarity of the RNA in the Tobacco Mosaic Virus Particle and the Direction of the Protein Stripping in Sodium Dodecyl Sulphate, FEBS Letters 64:285 (1976).CrossRefGoogle Scholar
  46. 46.
    C-I Branden, H. Eklund, B. Nordstrom, T. Boiwe, G. Soderlund, E. Zeppezauer, F. Ohlson, and A. Akeson, Structure of Liver Alcohol Dehydrogenase at 2.9 A Resolution, Proc. Natl. Acad. Sci. USA 70:2439 (1973).ADSCrossRefGoogle Scholar
  47. 47.
    I. E. Smiley, R. Koekoeck, M. J. Adams, and K. G. Rossmaim, The 5 A Resolution Structure of an Abortive Ternary Complex of Lactate Dehydrogenase and its Comparison with the Apo-enzyme, J, Mol. Biol. 55:467 (1971).CrossRefGoogle Scholar
  48. 48.
    E. Hill, D. Tsemoglou, L. Webb, and L. J. Banaszak, Polypeptide Conformation of Cytoplasmic Malate Dehydrogenase from an Electron Density Map at 3.0 A Resolution, J. Mol. Biol. 72: 577 (1972).CrossRefGoogle Scholar
  49. 49.
    A. C. H. Durham and A. Klug, Polymerisation of Tobacco Mosaic Virus Protein and its Control, Nature New Biol. 229:42 (1971).Google Scholar
  50. 50.
    P. J. G. Butler and G. P. Lomonossoff, Quantized Incorporation of RNA During Assembly of Tobacco Mosaic Virus from Protein Disks, J. Mol. Biol. 126:877 (1978).CrossRefGoogle Scholar
  51. 51.
    F. H. C. Crick and J. D. Watson, Structure of Small Viruses, Nature (Lond.) 177:473 (1956).ADSCrossRefGoogle Scholar
  52. 52.
    T. Unge, L. Liljas, B. Strandberg, I. Vaara, K. K. Kannan, K. Fridborg, C. E. Nordman, and P. J. Lentz Jr, Satellite Tobacco Necrosis Virus Structure at 4.0 A Resolution, Nature (Lond.) 285:373 (1980).ADSCrossRefGoogle Scholar
  53. 53.
    J. D. Bernal, I. Fankuchen, and D. P. Riley, Structure of the Crystals of Tomato Bushy Stunt Virus Preparation, Nature (Lond.) 142:1075 (1938).ADSCrossRefGoogle Scholar
  54. 54.
    S. C. Harrison, A. J. Olson, C. E. Schutt, and F. K. Winkler, Tomato Bushy Stunt Virus at 2.9 A Resolution, Nature (Lond.) 276:368 (1978).ADSCrossRefGoogle Scholar
  55. 55.
    S. C. Harrison, Protein Interfaces and Intersubunit Bonding, the Case of Tomato Bushy Stunt Virus, Biophys. J. 32:139 (1980).CrossRefGoogle Scholar
  56. 56.
    C. Chauvin, J. Witz, and B. Jacrot, Structure of the Tomato Bushy Stunt Virus: a Model for Protein RNA Interactions, J. Mol. Biol. 124:641 (1978).CrossRefGoogle Scholar
  57. 57.
    S. C. Harrison, Structure of Tomato Bushy Stunt Virus, I: The Spherically Averaged Electron Density, J. Mol. Biol. 42: 457 (1969).CrossRefGoogle Scholar
  58. 58.
    M. G. Munowitz, C. M. Dobson, R. G. Griffin, and S. C. Harrison, On the Rigidity of RNA in Tomato Bushy Stunt Virus, J. Mol. Biol. 141:327 (1980).CrossRefGoogle Scholar
  59. 59.
    C. Abdad-Zapatero, S. S. Abdel-Meguid, J. E. Johnson, A. G. W. Leslie, I. Rajrment, M. G. Rossmann, D. Suck, and T. Tsukihara, Structure of Southern Bean Mosaic Virus at 2.8 A Resolution, Nature (Lond.) 286:33 (1980).ADSCrossRefGoogle Scholar
  60. 60.
    L. Makowski, D. L. D. Caspar, and D. A. Marvin, Filamentous Bacteriophage Pfl Structure Determined at 7 A Resolution by Refinement of Models for the alpha-helical Subunit, Mol. Biol. 140:149 (1980).CrossRefGoogle Scholar
  61. 61.
    D. A. Marvin and E. J. Wachtel, Structure and Assembly of Filamentous Bacterial Viruses, Phil. Trans. R. Soc. Lond. B 276:81 (1976).ADSCrossRefGoogle Scholar
  62. 62.
    G. J, Hoi, L. M. Halie, and C, Sander, The Dipoles of the Alphahelix and the Beta-sheet: their Roles in the Folding of Proteins, Nature (Lond.) in press (1981).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Kenneth C. Holmes
    • 1
  1. 1.Max-Planck-Institut für medizinische Forschung69 HeidelbergGermany

Personalised recommendations