Advertisement

DNA-Protein Interactions

  • Juan A. Subirana
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)

Abstract

The study of the interactions between proteins and DNA is one of the crucial problems in molecular biology given the central role they play in the biological activity of the genetic material. However the nature of the forces and mechanisms involved has remained elusive. Only very recently the first two structures of proteins which interact specifically with DNA has been reported1,2, but the nature of the complex they form with DNA is based only on speculation. We can hope that this situation will change in the near future, since there are now methods to obtain oligonucleotides suitable to form specific complexes with proteins.

Keywords

High Pass Filter Lithium Salt Major Groove Chromatin Fiber Helical Turn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. McKay and T.A. Steitz, Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA, Nature 290:744 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    W.F. Anderson, D.H. OhleAdorf, Y. Takeda and B.W. Matthews, Structure of the cro repressor from bacteriophage X and its interaction with DNA, Nature 290: 754 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    A.G.W. Leslie, S. Arnott, R. Qiandrasekaran and R.L. Ratliff, Polymorphism of DNA double helices, J.Mol.Biol. 143:49 (1980)CrossRefGoogle Scholar
  4. 4.
    D.A. Marvin, M. Spencer, M.H.F. Wilkins and L.D. Hamilton, The molecular configuration of deoxyribonucleic acid, III. X-ray diffraction study of the C form of the lithium salt, J.Mol.Biol. 3:547 (1961)CrossRefGoogle Scholar
  5. 5.
    Y. Mitsui, R. Langridge, B.E. Shortle, C.C. Cantor, R.C. Grant, M. Kodama and R.D. Wells, Physical and Enzymatic studies on poly d(I-C).poly d(I-C), an unusual double-helical DNA, Nature 228:1166 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    A.H.J. Wang, G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. van Boom, G. van der Marel and A. Rich, Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 2 82:680 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    E. Sage and M. Leng, Conformational changes of poly (dG-dC).poly(dG-dC) modified by the carcinogen N-acetoxy-N-acetyl-2-aminofluorene, Nucl.Ac.Res. 9:1241 (1981)CrossRefGoogle Scholar
  8. 8.
    R. Wing, H. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura and R.E. Dickerson, Crystal structure analysis of a complete turn of B-DNA, Nature 2 87:755 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R.P. Millane and G.A. Rodley, Stereochemical details of the side-by-side model for DNA, Nucl.Ac.Res. 9:1765 (1981)CrossRefGoogle Scholar
  10. 10.
    J.A. Subirana, Histones and differentiation, in “Macromolecules Biosynthesis and Function”, FEBS Symposium Vol. 21, p.243, ed. by S. Ochoa, C.F. Heredia, C. Asensio and D. Nachmansohn, Academic Press, New York (1970)Google Scholar
  11. 11.
    J.A. Subirana, M. Chiva and R. Mayer, X-ray diffraction studies of complexes of DNA with lysine and with lysine-containing peptides, “Biomolecular structure, conformation, function and evolution” Vol. 1, p. 431, ed. by R. Srinivasan, Pergamon Press, Oxford & New York (1980)Google Scholar
  12. 12.
    J.L. Campos, J.A. Subirana, J. Aymamí, R. Mayer, E. Giralt and E. Pedroso, The conformational versatility of DNA in the presence of basic peptides, Studia Biophys. 81:3 (1980)Google Scholar
  13. 13.
    J.C. Wang, Helical repeat of DNA in solution, Proc. Natl.Acad.Sci.USA 76:200 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    I. Fita, Estructura de los complejos de ADN-(L-arginina), ADN-(poli-L-argininas) y de las nucleoprotaminas, Ph.D.Thesis, Faculty of Sciences, Universidad Autönoma de Barcelona, (1981)Google Scholar
  15. 15.
    R. Langridge, H.R. Wilson, C.W. Hooper, M.H.F. Wilkins and L.D. Hamilton, The molecular configuration of deoxyribonucleic acid. I. X-ray diffraction study of a crystalline form of the lithium salt, J.Mol. Biol. 2:19 (1960)CrossRefGoogle Scholar
  16. 16.
    M. Suwalsky and W. Traub, A comparative X-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine, Biopolymers 11:2223 (1972)CrossRefGoogle Scholar
  17. 17.
    P. Suau and J.A. Siibirana, X-ray diffraction studies of nucleoprotamine structure, J.Mol.Biol. 117:909(1977)CrossRefGoogle Scholar
  18. 18.
    W.L. Maxwell, Spermiogenesis of Eledone cirrhosa lamarck (Cephalopoda, Octopoda), Proc.R.Soc.London B186:181 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    S. Bram and H. Ris, On the structure of nucleohistone, J.Mol.Biol. 55:325 (1971)CrossRefGoogle Scholar
  20. 20.
    R. Llopis and J.A. Subirana, X-ray diffraction studies of calf thymus nucleohistone, An.Quim. 71:898(1975)Google Scholar
  21. 21.
    E.N. Trifonov, Structure of DNA in chromatin, “International Cell Biology” ed. by H. Schweiger, Springer Verlag, p. 128 (1980–81)Google Scholar
  22. 22.
    S.H. Kim, Nucleic acids-protein interactions: structural studies by X-ray diffraction and model building, “Biological Recognition and Assembly” p.311 Alan R. Liss, New York (1980)Google Scholar
  23. 23.
    S.B. Zimmerman and B.H. Pheiffer, Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media, J.Mol.Biol. 142:315 (1980)CrossRefGoogle Scholar
  24. 24.
    D.R. Hewish and A.L. Burgoyne, Chromatin substructure. The digestion of chromatin at regularly spaced sites by a nuclear deoxyribonuclease, Biochem.Biophys. Res.Commun. 52:504 (1973)CrossRefGoogle Scholar
  25. 25.
    A.L. Olins and D.F. Olins, Spheroid chromatin units (v-bodies), Science N.Y. 183:330 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    R. Rill and K.E. Van Holde, Properties of nuclease-re-sistant fragments of calf thymus chromatin. J. Biol. Chem. 248:1080 (1973)Google Scholar
  27. 27.
    R.D. Romberg, Chromatin structure, a repeating unit of histones and DNA, Science N.Y. 184: 868 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Subirana and A.B. Martinez, Model studies of chromatin structure based on X-ray diffraction data, Nucl.Ac.Res. 3:3025 (1976)Google Scholar
  29. 29.
    J.T. Finch, L.C. Lutter, D. Rhodes, R.S. Brown, B. Rushton, M. Levitt and A. Klug, Structure of nucleosome core particles of chromatin. Nature Lond.269:29 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Mirzabekov, Nucleosomes structure and its dynamic transitions, Quart.Rev.Biophys. 13:255 (1980)CrossRefGoogle Scholar
  31. 31.
    J.D. McGhee and G. Felsenfeld, Nucleosome structure, Ann.Rev.Biochem. 49:1115 (1980)CrossRefGoogle Scholar
  32. 32.
    R. Kornberg and A. Klug, The nucleosome, Scient.Amer. February(1981)Google Scholar
  33. 33.
    H. Ris, Chromosomal structure as seen by electron microscopy, “The Structure and Function of Chromatin” Ciba Foundation Symposium 28, p.7, Elsevier Excerpta Medica North Holland, Amsterdam (1975)Google Scholar
  34. 34.
    F. Thoma, Th. Koller and A. Klug, Involvement of histone HI in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J.Cell Biol, 83:403 (1979)CrossRefGoogle Scholar
  35. 35.
    G.F. Meyer and M. Renz, Native and reconstituted chromosome fiber fragments, Chromosoma 75:177 (1979)CrossRefGoogle Scholar
  36. 36.
    J.A. Subirana, S. Muñoz-Guerra, A.B. Martinez, L. Pérez-Grau, X. Marcet and I. Fita, The subunit structure of chromatin fibers, Chromosoma (in press)Google Scholar
  37. 37.
    F. Azorin, A.B. Martinez and J.A. Subirana, Organization of nucleosomes and spacer DNA in chromatin fibers, Int.J.Biol.Macromol. 2:81 (1980)CrossRefGoogle Scholar
  38. 38.
    M.P.F. Marsden and U.K. Laemmli, Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849 (1979)CrossRefGoogle Scholar
  39. 39.
    A.M. Mullinger and R.T. Johnson, The organization of supercoiled DNA from human chromosomes, J.Cell Sci. 38:369 (1979)Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Juan A. Subirana
    • 1
  1. 1.Unidad de Química Macromolecular del C.S.I.C.Escuela T.S.de Ingenieros Industriales DiagonalBarcelona (28)Spain

Personalised recommendations