Methods for Studying Fast Kinetics in Biological Systems

  • Dietmar Pörschke
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


Biological systems have been selected during evolution for high response rates to their environment. Systems with a high response rate obviously have a clear selective advantage compared to systems, which cannot adapt as quickly to their environment. As a consequence many reactions encountered in biological systems are very fast and can only be analysed with the aid of special kinetic techniques.


Sound Wave Sound Absorption Magic Angle Temperature Jump Pressure Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hartridge and F.J.W. Roughton, A Method of Measuring the Velocity of Very Rapid Chemical Reactions, Proc. Roy. Soc. (London) A 104:376 (1923)ADSCrossRefGoogle Scholar
  2. 2.
    B. Chance, Rapid Flow Methods, “Techniques of Chemistry”, Vol. VI, Part II, G.G. Hammes, ed., Wiley Interscience, New York (1974)Google Scholar
  3. 3.
    Q.H. Gibson, Rapid Mixing: Stopped Flow, “Methods in Enzymology”, Vol. XVI, K. Kustin, ed. Academic, New York (1969)Google Scholar
  4. 4.
    K. Hiromi, “Kinetics of Fast Enzyme Reactions”, Wiley, New York (1979)Google Scholar
  5. 5.
    P.M. Bayley and M. Anson, Stopped-Flow Circular Dichroism: A New Fast Kinetic System, Biopolymers 13:401 (1974)CrossRefGoogle Scholar
  6. 6.
    I. Luchins and S. Beychok, Far-Ultraviolet Stopped-Flow Circular Dichroism, Science 199:425 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    B. Balko, P. Brown, R. L.Berger and K. Anderson, Fast Stopped-Flow Microcalorimeter, J. Biochem. Biophys. Meth. 4:1 (1981)CrossRefGoogle Scholar
  8. 8.
    P. Davidovits and S. C. Chas, Kinetics with Microsecond Mixing of Liquid Reactants, Anal. Chem. 52:2435 (1980)Google Scholar
  9. 9.
    A. R. Fersht and R. Jakes, Demonstration of Two Reaction Pathways of the Aminoacylation of tRNA. Application of the Pulsed Quenched Flow Technique, Biochemistry 14:3350 (1975)CrossRefGoogle Scholar
  10. 10.
    M. Eigen and L. DeMaeyer, Relaxation Methods, in: “Technique of Organic Chemistry”, Vol. VIII, Part II, A. Weissberger, ed., Wiley Interscience, New York (1963)Google Scholar
  11. 11.
    C. F. Bernasconi, “Relaxation Kinetics”, Academic Press, New York (1976)Google Scholar
  12. 12.
    H. Strehlow and W. Knoche, “Fundamentals of Chemical Relaxation”, Verlag Chemie, Weinheim (1977)Google Scholar
  13. 13.
    G.G. Hammes, Temperature-Jump Methods, in: “Techniques of Chemistry”, Vol. VI, Part II, G. G. Hammes, ed., Wiley Interscience, New York (1974)Google Scholar
  14. 14.
    R. Rigler, C. R. Rabl and T. M. Jovin, A Temperature Jump Apparatus for Fluorescence Measurements, Rev. Sci. Instrum. 45:580 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    P. Bayley, S. Martin and M. Anson, Temperature-Jump Circular Dichroism: Observation of Chiroptical Relaxation Processes at Millisecond Time Resolution, Bio. Bio. Res. Comm. 66:303 (1975)CrossRefGoogle Scholar
  16. 16.
    G. W. Hoffman, A Nanosecond Temperature-Jump Apparatus, Rev. Sci. Instrum. 42:1643 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    D. Pörschke, Cable Temperature Jump Apparatus with Improved Sensitivity and Time Resolution, Rev. Sci. Instrum. 47:1363 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    E. F. Caldin and I. E. Crooks, A Microwave Temperature-Jump Apparatus for the Study of Fast Reactions in Solution, J. Sci. Instrum. 44:449 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    T. D. Dewey and D. H. Turner, Raman Laser Temperature-Jump Kinetics, Adv. Mol. Relax. Int. Proc. 13:331 (1978)CrossRefGoogle Scholar
  20. 20.
    B. Gruenewald and W. Knoche, Recent Developments and Applications of Pressure Jump Methods, “Techniques and Applications of Fast Reactions in Solution”, W. J. Gettins and E. Wyn-Jones, eds., Reidel (1979).Google Scholar
  21. 21.
    R. M. Clegg and B. W. Maxfield, Chemical Kinetic Studies by a New Small Pressure Perturbation Method, Rev. Sei. Instrum. 47:1383 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    H. H. Grunhagen, A High Power Square Wave Pulse Generator for the Investigation of Fast Electric Field Effects in Solution, J. fesstechnik 19:23 (1974)Google Scholar
  23. 23.
    H. H. Grunhagen, Fast Spectrophotometric Detection System for Coupled Physical and Chemical Electric Field Effects in Solution, Biophysik 10:347 (1973)CrossRefGoogle Scholar
  24. 24.
    L. C.M. DeMaeyer, Electric Field Methods, “Methods in Enzymology”, Vol. XVI, K. Kustin, ed. Academic, New York (1969)Google Scholar
  25. 25.
    L. DeMaeyer, Electric Field Methods, “Techniques of Chemistry” Vol. VI, Part II, G. G. Hammes, ed., Wiley Interscience, New York (1974)Google Scholar
  26. 26.
    L. Onsager, Deviations from Ohm s Law in Weak Electrolytes, J. Chem. Phys. 2:599 (1934)ADSCrossRefGoogle Scholar
  27. 27.
    D. Porschke, Threshold Effects Observed in Conformation Changes Induced by Electric fields, Biopolymers 15:1917 (1976)CrossRefGoogle Scholar
  28. 28.
    H. Labhart, Methoden der Zuordnung von Absorptionsbanden von Farbstoffen zu berechneten üebergaengen, Chimia 15:20 (1961)Google Scholar
  29. 29.
    D. Porschke, The Binding of Arg- and Lys-peptides to Single Stranded Polyribonucleotides and its Effect on the Polymer Conformation, Biophys. Chem. 10:1 (1979)CrossRefGoogle Scholar
  30. 30.
    M. Eigen, G. Kurtze and K. Tamm, Zum Reaktionsmechanismus der Ultraschallabsorption in waessrigen Elektrolytloesungen, Z. Elektrochem. 57:103 (1953)Google Scholar
  31. 31.
    F. Eggers and T. Funck, Ultrasonic Relaxation Spectroscopy in Liquids, Naturwissenschaften 63:280 (1976)ADSCrossRefGoogle Scholar
  32. 32.
    S. W. Provencher, A Fourier Methods for the Analysis of Exponential Decay Curves, Biophys. J. 16:27 (1976)CrossRefGoogle Scholar
  33. 33.
    G. Ilgenfritz, Theory and Simulaton of Chemical Relaxation Spectra, in “Chemical Relaxation in Molecular Biology”, I. Pecht and R. Rigler, eds. Springer, Berlin (1977)Google Scholar
  34. 34.
    R. Winkler-Oswatitsch and M. Eigen, The Art of Titration. From Classical End Points to Modern Differential and Dynamic Analysis, Angew. Chem. Intern. Ed. 18:20 (1979)CrossRefGoogle Scholar
  35. 35.
    G. G. Hammes, ed. Investigation of Rates and Mechaniams of Reactions, Part II, “Techniques of Chemistry”, Vol. VI, Wiley Interscience, New York (1974)Google Scholar
  36. 36.
    G. Schwarz and J. Engel, Kinetik kooperativer Konformationsumwandlungen von linearen Biopolymeren, Angew. Chem. 84:615 (1972)Google Scholar
  37. 37.
    T. Sano and T. Yasunaga, Kinetics of the Helix-Coil Transition of Polypeptides in Solution by the Relaxation Methods, Biophys. Chem. 11:377 (1980)CrossRefGoogle Scholar
  38. 38.
    T. Y. Tsong, R. L. Baldwin and E. L. Elson, The Sequential Unfolding of Ribonuclease A: Detection of a Fast Initial Phase in the Kinetics of Unfolding, Proc. Nat. Acad. Sci. US 68:2712 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    K. Kirschner, E. Gallego, I. Schuster and D. Goodall, Co-operative Binding of Nicotinamide-Adenine-Dinucleotide to Yeast Glyceraldehyde- 3-Phosphate Dehydrogenase, J. Mol. Biol. 58:29 (1971)CrossRefGoogle Scholar
  40. 40.
    K. Kirschner, M. Eigen, R. Bittman and B. Voigt, The Binding of Nicotinamide-Adenine Dinucleotide to Yeast D-Glyceraldehyde-3-Phosphate Dehydrogenase: Temperature Jump Relaxation Studies on the Mechanism of an Allosteric Enzyme, Proc. Nat. Acad. Sei. TO 56:1661 (1966)ADSCrossRefGoogle Scholar
  41. 41.
    I. Pecht and D. Lancet, Kinetics of Antibody-Hapten Interactions, in “Chemical Relaxation in Molecular Biology”, I. Pecht and R. Rigler, eds. Springer, Berlin (1977)CrossRefGoogle Scholar
  42. 42.
    L. M. Rhodes and R. R. Schimmel, Nanosecond Relaxation Processes in Aqueous Mononucleoside Solutions, Biochemistry 10:4426 (1971)CrossRefGoogle Scholar
  43. 43.
    D. Porschke and F. Eggers, Thermodymanics and Kinetics of Base-Stacking Interactions, Eur, Biochem, 26:490 (1972)Google Scholar
  44. 44.
    D. Porschke, The Nature of Stacking Interactions in Polynucleotides. Molecular States in Oligo- and Polyribocytidylie Acids by Relaxation Analysis, Biochemistry 15:1495 (1976)CrossRefGoogle Scholar
  45. 45.
    T. G. Dewey and D. H. Turner, Laser Temperature Jump Study of Solvent Effects on Polylidenylie Acid Stacking, Biochemistry 19:1681 (1980)CrossRefGoogle Scholar
  46. 46.
    D. Porschke, A Direct Measurement of the Unzippering Rate of Nucleic Acid Double Helix, Biophys. Chem. 2:97 (1974)CrossRefGoogle Scholar
  47. 47.
    D. Porschke, Elementary Steps of Base Recognition and Helix-Coil Transitions in Nucleic Acids, in: “Molecular Biology, Biochemistry and Biophysics” Vol. 24, I. Pecht and R. Rigler, eds. Springer, West Berlin (1977)Google Scholar
  48. 48.
    M. E. Craig, D. M. Crothers and P. Doty, Relaxation Kinetics of Dimer Formation by Self Complementary Oligonucleotides, J. Mol. Biol. 62:383 (1971)CrossRefGoogle Scholar
  49. 49.
    H. J. Grosjean, S. DeHenau and D. M. Crothers, On the Physical Basis for Ambiguity in Genetic Coding Interactions, Proc. Nat. Acad. Sci. US 75:610 (1978)ADSCrossRefGoogle Scholar
  50. 50.
    D. Labuda and D. Porschke, Multistep Mechanism of Codon Recognition by Transfer Ribonucleic Acid, Biochemistry 19:3799 (1980)CrossRefGoogle Scholar
  51. 51.
    D. Porschke, The mode of Mg++ binding to Oligonucleotides. Inner Sphere Complexes a Markers of Recognition?, Nucl. Ac. Res. 6:883 (1979)CrossRefGoogle Scholar
  52. 52.
    J. Ramstein, M. Ehrenberg and R. Rigler, Fluorescence Relaxation of Proflavin-Desoxyribonucleic Acid Interaction. Kinetic Properties of a Base-Specific Reaction, Biochemistry 19:3938 (1980)CrossRefGoogle Scholar
  53. 53.
    E. Schulz, R. Jaenicke and W. Knoche, Pressure Jump Relaxation Studies of the Association-Dissociaton Reaction of E. coli Ribosomes, Biophys. Chem. 11:253 (1976)CrossRefGoogle Scholar
  54. 54.
    G. Krauss, D. Riesner and G. Maass, Mechanism of Discrimination between Cognate and Non-Cognate tRNAs by Phenylalanyl-tRNA Synthetase from Yeast, Eur. J. Biochem. 68:81 (1976)CrossRefGoogle Scholar
  55. 55.
    T. M. Jovin and G. Striker, Chemical Relaxation Kinetic Studies of E. coli RNA Polymerase Binding to Poly d(AT) using Ethidium Bromide as a Fluorescence Probe, in “Chemical Relaxation in Molecular Biology”, I. Pecht and R. Rigler, eds. Springer, Berlin (1977)Google Scholar
  56. 55.
    E. Grell and I. Oberbaumer, Dynamic Aspects of Carrier-Mediated Cation Transport through Membranes, in“Chemical Relaxation in Molecular Biology”, I. Pecht and R. Rigler, eds. Springer, Berlin (1977).Google Scholar
  57. 57.
    M. Dourlent, J. F. Hogrel and C. Helene, Anisotropy Effects in Temperature Jump Relaxation Studies on Solutions Containing Linear Polymers, J. Amer. Chem. Soc. 96:3398 (1974)CrossRefGoogle Scholar
  58. 58.
    U. Strehlow and F. Jaehnig, Electrostatic Interactions at Charged Lipid Membranes. Kinetics of the Electrostatically Triggered Phase Transition, Bio. Bio. Acta 641:301 (1981)CrossRefGoogle Scholar
  59. 59.
    B. Grunewald, A. Blume and F. Watanabe, Kinetic Investigations of the Phase Transition of Phospholipid Bilayers, Bio. Bio. Acta. 597:41 (1980)CrossRefGoogle Scholar
  60. 60.
    D. Porschke, Thermodynamic and Kinetic Parameters of Oligonucleotide- Oligopeptide Interactions, Eur. J. Biochem. 86:291 (1978)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Dietmar Pörschke
    • 1
  1. 1.Max-Planck-Institut für biophysikalische Chemie34 GöttingenW.-Germany

Personalised recommendations