Calorimetric Methods for Studying Biomolecular Structure and Organization

  • Theodor Ackermann
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


Biopolymers and their synthetic models have a very high degree of intramolecular ordering — a definite arrangement of groups and distribution of secondary bonds. The helical duplex structure1 (Fig. 1) found for native deoxyribonucleic acid occurs in a whole class of polynucleotides of high helical content. Indeed, this kind of secondary structure, which is stabilized by base stacking and interbase hydrogen bonding, occupies the same central position in the polynucleotide field as does the alpha-helix2 in the polypeptide field (Fig. 2). In dilute solutions biopolymers have been found to include all gradations of secondary structure, from the completely amorphous to the highly helical. Helical forms other than the duplex have been found to occur for biosynthetic polymers. In studies on polynucleotide systems, ultraviolet hypochroism can be used as a secondary criterion for the helical content of the dissolved polymer molecules; changes in optical density appear to parallel the onset of a disruption of the secondary structure, as judged by other criteria. Most biopolymers and their synthetic models can undergo a transition from the completely ordered helical state to the entirely amorphous situation of a randomly coiled molecule. This helix-random coil transition can be mediated by a change in a parameter that influences the degree of intramolecular hydrogen bonding in the dissolved polymeric molecule.


Enthalpy Change Calorimetric Study Internal Loop Calorimetric Method Transition Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Watson and F.H.C. Crick, Genetic implications of the structure of deoxyribonucleic acid, Nature 171:737, 964 (1953).ADSCrossRefGoogle Scholar
  2. 2.
    L. Pauling, R. Corey and H. Branson, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. U.S. 37:205 (1951).Google Scholar
  3. 3.
    J. Marmur and P. Doty, Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature, J. Molec. Biol. 5:109 (1962).CrossRefGoogle Scholar
  4. cf. also Bresch, C. and R. Hausmann, Klassische und molekulare Genetik, 3rd Ed., Springer, Berlin, Heidelberg, New York (1972).CrossRefGoogle Scholar
  5. 4.
    B. Zimm, P. Doty and K. Iso, Determination of the parameters for helix formation in poly-benzyl-glutamate, Proc. Natl. Acad. Sci., 45:1601 (1959).ADSCrossRefGoogle Scholar
  6. 5.
    U. Schernau, S. Marcinowski and Th. Ackermann, Infrared spectroscopic studies of the interaction between polyuridylic acid and adenosine mono- and oligonucleotides, Zeitschrift für Physikalische Chemie Neue Folge 117:11–18 (1979).CrossRefGoogle Scholar
  7. 6.
    J. Langowski, K. Henco, D. Riesner and H.L. Sänger, Common structural features of different viroids: Serial Arrangement of double helical sections and internal loops. Nucleic Acids Research 5:1589 (1978).CrossRefGoogle Scholar
  8. cf. also H. Klump, D. Riesner and H.L. Sänger, Calorimetric studies on viroids. Nucleic Acids Research 5:1581 (1978).CrossRefGoogle Scholar
  9. 7.
    D.M. Crothers, in Physical Chemistry of Nucleic Acids, Harper & Row, Publishers, New York, Evanston, San Francisco, London 1974, p.350.Google Scholar
  10. 8.
    J. Applequist, On the helix-coil equilibrium in polypeptides, J. Chem. Physics 38:934 (1963).ADSCrossRefGoogle Scholar
  11. 9.
    T.H. Benzinger, Analytical methods of protein chemistry, Volume 5, Pergamon Press, Oxford 1969, p.93.Google Scholar
  12. 10.
    R. Steiner and C. Kitzinger, Heat of reaction of polyriboadenylic acid and polyribouridylic acid. Nature 194:1172 (1962).ADSCrossRefGoogle Scholar
  13. 11.
    M.A. Rawitscher, P. Ross and J.M. Sturtevant, The heat of reaction between polyriboadenylic acid and polyribouridylic acid, J. Am. Chem. Soc. 85:1915 (1963).CrossRefGoogle Scholar
  14. 12.
    P.L. Privalov, K.A. Kafiani and D.R. Monaselidze, Study of thermal denaturation of DNA with the aid of an adiabatic microcalorimater, Dokl. Akad. Nauk SSSR 156:951 (1964).Google Scholar
  15. 13.
    F.E. Karasz and J.M. O’Reilly, Enthalpy changes in the helix-coil transition of poly-y-benzyl-L-glutamate, Biopolymers 5:27 (1967).CrossRefGoogle Scholar
  16. 14.
    J.F. Brandts, W.M. Jackson and T. Yao-Chung Ting, A calorimetric study of the thermal transitions of three specific transfer ribonucleic acids, Biochem. 13:3595 (1974).CrossRefGoogle Scholar
  17. 15.
    P.L. Privalov, G.M. Mrevlishvili, Biofizica 12:22 (1966).Google Scholar
  18. 16.
    G. Rialdi, J. Levy and R. Biltonen, Thermodynamic studies of transfer ribonucleic acids. I. Magnesium binding to yeast phenylalanine transfer ribonucleic acid. Biochemistry 11:2472 (1972).CrossRefGoogle Scholar
  19. 17.
    Biochemical Microcalorimetry, H.D. Brown, Ed., Academic Press, New York 1969.Google Scholar
  20. 18.
    Th. Ackermann, Kalorimetrie von Biopolymeren, Chemie in unserer Zeit 11:97 (1977).CrossRefGoogle Scholar
  21. 19.
    Th. Ackermann and H. Rüterjans, Kalorimetrische Messungen zur Helix-Knäuel-Umwandlung von Nucleinsäuren und synthetischen Polypeptiden in Lösung, Ber. d. Bunsenges. 68:850 (1964).Google Scholar
  22. 20.
    M. Grubert and Th. Ackermann, Ein empfindliches adiabatisches Differenzkalorimeter zur Untersuchung kooperativer Strukturumwandlungen in Lösungen, Zeitschrift für physikalische Chemie Neue Folge 93:255 (1974).CrossRefGoogle Scholar
  23. 21.
    H. Klump and Th. Ackermann, Experimental thermodynamics of the helix-random coil transition. IV. Influence of the base composition of DNA on the transition enthalpy, Biopolymers 10:513 (1971).CrossRefGoogle Scholar
  24. 22.
    H. Klump, A calorimetric study of polyguanylic acid at neutral pH, Biophysical Chemistry 5:359 (1976).CrossRefGoogle Scholar
  25. 23.
    R.D. Blake and St. G. Lefoley, Spectral analysis of high resolution direct-derivative melting curves of DNA for instantaneous and total base composition, Biochimica and Biophysica Acta 518:233 (1978).Google Scholar
  26. 24.
    F.J. Schott, M. Grubert, W. Wangler and Th. Ackermann, A comparative calorimetric study on tRNA unfolding. Biophysical Chemistry, in press (1980)Google Scholar
  27. H.-J. Hinz, V. Filimonov and P.L. Privalov, Calorimetric studies on melting of tRNAPhe (yeast), Eur. J. Biochem. 72:79 (1977).CrossRefGoogle Scholar
  28. 25.
    S.H. Kim, G.J. Quigley, F.L. Suddath, A. McPherson, D. Sneden, J.J. Kim, J. Weinzierl and A. Rich, Three dimensional structure of yeast phenylalanine transfer RNA:Folding of the polynucleotide chain. Science 179:285 (1973).ADSCrossRefGoogle Scholar
  29. 26.
    I. Wadsö, in Biochemical Microcalorimetry, H.D. Brown, Ed., Academic Press, New York 1969, p.83.Google Scholar
  30. 27.
    F. Quadrifoglio, V. Creszenzi and V. Giancotti, Calorimetry of DNA-dye interactions in aqueous solution. I. Proflavine and ethidium bromide, Biophys. Chem. 1 319 (1974).CrossRefGoogle Scholar
  31. 28.
    W. Burkart. Ph.D Thesis, Freiburg (1980)Google Scholar
  32. cf. also W. Burkart und H. Klump, Thermodynamische Messungen der Bindungsenthalpien kleiner Liganden mit Nukleinsäuren. 1. Anlagerung von Ethidiumbromid an DNA und Apurinsäure, Ber. d. Bunsenges, in press (1981).Google Scholar
  33. 29.
    H. Klump and J. Beaumais, private communication (1981).Google Scholar
  34. 30.
    R. Jaenicke and J.M. Sturtevant, Personal communicationGoogle Scholar
  35. cf. also W. Schulz, Masters Thesis, Freiburg (1973).Google Scholar
  36. 31.
    A. Blume and Th. Ackermann, A calorimetric study of the lipid phase transitions in aqueous dispersions of phosphorylethanol- amine mixtures, FEBS Letters 43:71 (1974).CrossRefGoogle Scholar
  37. 32.
    D. Chapman, R.M. Williams and B.D. Ladbrooke, Chem. Phys. Lipids 1:445 (1967).CrossRefGoogle Scholar
  38. 33.
    B. Arnold and H.U. Weltzien, Effects of a synthetic lysolecithin analog in the phase transition of mixtures of phosphatidylcholine FEBS Letters 61:199 (1976).CrossRefGoogle Scholar
  39. 34.
    H.J. Eibl and A. Blume, The influence of charge on phosphatidic acid bilayer membranes, Biochimica and Biophysica Acta 553:476 (1979).CrossRefGoogle Scholar
  40. 35.
    A. Blume, A comparative study of the phase transitions of phospholipid bilayers and monolayers, Biochimica and Biophysica Acta 557:32 (1979).CrossRefGoogle Scholar
  41. 36.
    M. Grubert and Th. Ackermann, Angew. Chemie, to be published (1981).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Theodor Ackermann
    • 1
  1. 1.Institut fuer physikalische ChemieUniversitaet FreiburgFreiburgGermany

Personalised recommendations