Chiroptical Methods and Their Applications to Biomolecular Systems

  • Ignacio TinocoJr.
  • Carlos Bustamente
  • Marcos F. Maestre
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 45)


We will describe the various optical methods which have been used to study chiral biomacromolecules and their ordered aggregates such as found in viruses, ribosomes, membranes, etc. It is redundant to use the term chiral biomacromolecule, because all biomacromolecules are chiral. Therefore, we use chiral to chararacterize the optical method. A chiroptical method is thus one which yields nonzero results only when applied to chiral molecules. Here we will consider:
  • circular dichroism — the differential absorption of incident left and right circularly polarized light

  • circular intensity differential scattering — the differential scattering of incident left and right circularly polarized light optical rotation — the rotation of the plane of polarization of incident linearly polarized light

  • circularly polarized luminescence — the differential emission of left and right circularly polarized light


Circular Dichroism Circular Polarization Optical Activity Vacuum Ultraviolet Vibrational Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rosencwaig, Photoacoustic Spectroscopy, Ann. Rev. Biophys. Bioeng. 9:31 (1980).CrossRefGoogle Scholar
  2. 2.
    L. Velluz, M. Legrand, and M. Grosjean: “Optical Circular Dichroism,” Academic Press, Inc., New York (1965).Google Scholar
  3. 3.
    L.N. M. Duysens, The Flattening of the Absorption Spectrum of Suspensions, As Compared to That of Solutions, Biochim. Biophys. Acta 19:1 (1956).CrossRefGoogle Scholar
  4. 4.
    D. W. Urry, L. Masotti, and J. Krivacic, Improved Ellipticity Data for Several Biological Membranes, Biochem. Biophys. Res. Comm. 41:521 (1970).CrossRefGoogle Scholar
  5. 5.
    A. S. Schneider and D. Harmatz, An Experimental Method Correcting for Absorption Flattening and Scattering in Suspensions of Absorbing particles: CD and Absorption Spectra of Hemoglobin situ in Red Blood Cells, Biochemistry 15:4158 (1976).CrossRefGoogle Scholar
  6. 6.
    O. Schnepp, Natural and Magnetic Circular Dichroism Spectros copy in the Vacuum Ultraviolet, in: “Optical Activity and Chiral Discrimination,” S. F. Mason, ed., D. Reidel, London (1979) pp. 87–106.Google Scholar
  7. 7.
    P. J. Stephens and R. Clark, Vibrational Circular Dichroism: The Experimental Viepoint, in: “Optical Activity and Chiral Discrimination,” S. F. Mason, ed., D. Reidel, London (1979) pp. 263–287.Google Scholar
  8. 8.
    A. E. Hansen and T. D. Bowman, Natural Chiroptical Spectros copy: Theory and Computations, Advan. Chem. Phys. 44:545 (1980).CrossRefGoogle Scholar
  9. 9.
    I. Tobias, T. R. Brocki, and N. L. Balazs, The Optical Activity of Molecules of Arbitrary Size, J. Chem. Phys. 62:4181 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    R. W. Woody, Polypeptides and Proteins Nucleic Acids, in: “ORD and CD: Theory, Chemical Practices and Biochemical Applications,” F. Ciardelli, S. F. Mason, P. Salvadori, and G. Snatzke, eds., John Wiley & Sons, London (1981).Google Scholar
  11. 11.
    R. W. Woody and I. Tinoco, Jr., Optical Rotation of Oriented Helices. III. Calculation of the Rotatory Dispersion and Circular Dichroism of the Alpha and 310 Helix, J. Chem. Phys. 46:4927 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    V. Madison and J. Schellman, Optical Properties of Polypeptides and Proteins, Biopolymers 11:1041–1076 (1972).CrossRefGoogle Scholar
  13. 13.
    R. W. Woody, Optical Properties of Polypeptides in the 3-Conformation, Biopolymers 8:669 (1969).CrossRefGoogle Scholar
  14. 14.
    R. W. Woody, Studies of the Theoretical Circular Dichroism of Polypeptides: Contributions of ß Turns, in: “Peptides, Polypeptides and Proteins,” E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds., Wiley-Interscience. New York (1974) pp. 338–350.Google Scholar
  15. 15.
    W. Hug and I. Tinoco, Jr., Electronic Spectra of Nucleic Acid Bases. I. Interpretation of the In-Plane Spectra with the Aid of All Valence Electron MO-CI Calculations, J. Am. Chem. Soc. 95:2803 (1973).CrossRefGoogle Scholar
  16. 16.
    W. Hug and I. Tinoco, Jr., The Electronic Spectra of Nucleic Acid Bases. II. Out-of-Plane Transitions and the Structure of the Nonbonding Orbitals, J. Am. Chem. Soc. 96:665 (1974).CrossRefGoogle Scholar
  17. 17.
    W. C. Johnson, Jr. and I. Tinoco, Jr., Circular Dichroism of Polynucleotides: A General Method Applied to Dimers, Biopolymers 8:715 (1969).CrossRefGoogle Scholar
  18. 18.
    C. L. Cech and I. Tinoco, Jr., Circular Dichroism Calculations for Double-Stranded Polynucleotides of Repeating Sequences, Biopolymers 16:43 (1977).CrossRefGoogle Scholar
  19. 19.
    H. DeVoe, Optical Properties of Molecular Aggregates. II Classical Theory of the Refraction, Absorption, and Optical Activity of Solutions and Crystals, J. Chem. Phys. 43:3199 (1965).CrossRefGoogle Scholar
  20. 20.
    C. L. Cech, W. Hug, and I. Tinoco, Jr., Polynucleotide Circular Dichroism Calculations: Use of an All-Order Classical Coupled Oscillator Polarizability Theory, Biopolymers 15:131 (1976).CrossRefGoogle Scholar
  21. 21.
    G. Holzwarth and I. Chabay, Optical Activity of Vibrational Transitions: A Coupled Oscillator Model, J. Chem. Phys. 57:1632 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    J. A. Schellman, Vibrational Optical Activity, J. Chem. Phys. 58:2882 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    T. R. Faulkner, C. Marcott, A. Moscowitz, and J. Overend, Anharmonic Effects in Vibrational Circular Dichroism, J. Am. Chem. Soc. 99:8160–8168 (1977).CrossRefGoogle Scholar
  24. 24.
    L. A. Nafie and M. Diem, Optical Activity in Vibrational Transitions: Vibrational Circular Dichroism and Raman Optical Activity, Accts. Chem. Res. 12:296 (1979).CrossRefGoogle Scholar
  25. 25.
    W. M. McClain, Two-Photon Molecular Spectroscopy, Accts. Chem. Res. 7:129 (1974).CrossRefGoogle Scholar
  26. 26.
    I. Tinoco, Jr., Two-Photon Circular Dichroism, J. Chem. Phys. 62:1006 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    R. W. Woody, Optical Rotatory Properties of Biopolymers, J. Polymer Sei. Macromol. Rev. 12:181 (1977).CrossRefGoogle Scholar
  28. 28.
    W. C. Johnson, Jr.: Circular Dichroism Spectroscopy and the Vacuum Ultraviolet Region, Ann. Rev. Phys. Chem. 29:93 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    I. Tinoco, Jr., C. Bustamante, and M. F. Maestre, The Optical Activity of Nucleic Acids and Their Aggregates, Ann. Rev. Biophys. Bioeng. 9:107 (1980).CrossRefGoogle Scholar
  30. 30.
    N. Greenfield and G. D. Fasman, Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation, Biochemistry 8:4108 (1969).CrossRefGoogle Scholar
  31. 31.
    Y.-H. Chen, J. T. Yang, and H. M. Martinez, Determination of the Secondary Structures of Proteins by CD and ORD, Biochemistry 11:4120 (1972).CrossRefGoogle Scholar
  32. 32.
    Y.-H. Chen, J. T. Yang, and K. H. Chou, Determination of the Helix and 3 Form of Proteins in Aqueous Solutions by CD, Biochemistry 13:3350 (1974).CrossRefGoogle Scholar
  33. 33.
    C. T. Chang, C. S. C. Wu, and J. T. Yang, Circular Dichroic Analysis of Protein Conformation Inclusion of the ß-turns. Anal. Biochem. 91:13 (1978).CrossRefGoogle Scholar
  34. 34.
    J. B. Siegel, W. E. Steinmetz, and G. L. Long, A Computer-Assisted Model for Estimating Protein Secondary Structure from Circular Dichroic Spectra: Comparison of Animal Lactate Dehydrogenases, Anal. Biochem. 104:160 (1980).CrossRefGoogle Scholar
  35. 35.
    S. Brahms and J. Brahms, Determination of Protein Secondary Structure in Solution by Vacuum Ultraviolet Circular Dichroism, J. Mol. Biol. 138:149 (1980).CrossRefGoogle Scholar
  36. 36.
    J. P. Hennessey, Jr. and W. C. Johnson, Jr., Information Content in the Circular Dichroism of Proteins, Biochemistry 20:1085 (1981).CrossRefGoogle Scholar
  37. 37.
    M. Levitt and J. Greer, Automatic Identification of Secondary Structure in Globular Proteins, J. Mol. Biol. 114:181 (1977).CrossRefGoogle Scholar
  38. 38.
    C. A. Sprecher, W. A. Baase, and W. C. Johnson, Jr., Conformation and Circular Dichroism of DNA, Biopolymers 18:1009 (1979).CrossRefGoogle Scholar
  39. 39.
    F. S. Allen, Donald M. Gray, G. P. Roberts, and I. Tinoco, Jr., The Ultraviolet Circular Dichroism of Some Natural DNAs and an Analysis of the Spectra for Sequence Information, Biopolymers 11:853 (1972).CrossRefGoogle Scholar
  40. 40.
    D. M. Gray, F. D. Hamilton and M. R. Vaughan, The Analysis of Circular Dichroism Spectra of Natural DNA’s Using Synthetic Spectral Components from Synthetic DNA’s, Biopolymers 17:85 (1978).CrossRefGoogle Scholar
  41. 41.
    D. M. Gray, J.-J. Liu, R. L. Ratliff, and F. S. Allen, Sequence-Dependence of the Circular Dichroism of Synthetic Double-Stranded RNAs, Biopolymers, in press (1981).Google Scholar
  42. 42.
    A. Blum, O. C. Uhlenbeck, and I. Tinoco, Jr., Circular Dichroism Study of Nine Species of Transfer Ribonucleic Acid, Biochemistry 11:3248 (1972).CrossRefGoogle Scholar
  43. 43.
    B. B. Johnson, K. S. Dahl, I. Tinoco, Jr., V. I. Ivanov, and V. B. Zhurkin, Correlations Between DNA Structural Parameters and Calculated Circular Dichroism Spectra, Biochemistry 20:73 (1981).CrossRefGoogle Scholar
  44. 44.
    V. B. Zhurkin, Y. P. Lysov, and V. I. Ivanov, Different Families of Double-Stranded Conformations of DNA as Revealed by Computer Calculations, Biopolymers 17:377 (1978).CrossRefGoogle Scholar
  45. 45.
    E. S. Stephens, Optical Activity in the Vacuum Ultraviolet, Ann. Rev. Biophys. Bioeng. 5:53 (1976).Google Scholar
  46. 46.
    C. Marcott, H. A. Havel, B. Hedlund, J. Overend, and A. Moscowitz, A Vibrational Rotational Strength of Extraordinary Intensity. Azidomethemoglobin A, in: “Optical Activity and Chiral Discrimination,” S. F. Mason, ed., D. Reidel, London (1979) pp. 289–292.Google Scholar
  47. 47.
    J. Y. Cassim and J. T. Yang, Critical Comparison of Experimental Optical Activity of Helical Polypeptides and Predictions of the Molecular Exciton Model, Biopolymers 9: 1475 (1970).CrossRefGoogle Scholar
  48. 48.
    W. C. Johnson, Jr. and I. Tinoco, Jr., Circular Dichroism of Polypeptide Solutions in the Vacuum Ultraviolet, J. Am. Chem. Soc. 94:4389 (1972).CrossRefGoogle Scholar
  49. 49.
    I. Tinoco, Jr. and D. H. Turner, Fluorescence Detected Circular Dichroism. Theory, J. Am. Chem. Soc. 98:6453 (1976).CrossRefGoogle Scholar
  50. 50.
    D. H. Turner, I. Tinoco, Jr., and M. Maestre, Fluorescence Detected Circular Dichroism, J. Am. Chem. Soc. 96:4340 (1974).CrossRefGoogle Scholar
  51. 51.
    C. Reich and I. Tinoco, Jr., Fluorescence Detected Circular Dichroism of Dinucleoside Phosphates, A Study of Solution Conformations and the Two-State Model, Biopolymers 19:833 (1980).CrossRefGoogle Scholar
  52. 52.
    I. Tinoco, Jr., The Optical Rotation of Oriented Helices. I. Electrical Orientation of Poly-y-Benzyl-L-Glutamate in Ethylene Dichloride, J. Am. Chem. Soc. 81:1540 (1959).CrossRefGoogle Scholar
  53. 53.
    S. Y. Chung and G. Holzwarth, Circular Dichroism of Flow-Oriented Nucleic Acids. I. Experimental Results, J. Mol. Biol. 92:449 (1975).CrossRefGoogle Scholar
  54. 54.
    I. Tinoco, Jr., B. Ehrenberg, and I. Z. Steinberg, Fluores cence Detected Circular Dichroism and Circular Polarization of Luminescence in Rigid Media: Direction Dependent Optical Activity Obtained by Photoselection, J. Chem. Phvs. 66:916 (1977).ADSCrossRefGoogle Scholar
  55. 55.
    D. H. Turner, Fluorescence-Detected Circular Dichroism, Methods in Enzymology 49:199 (1978).CrossRefGoogle Scholar
  56. 56.
    E. W. Lobenstine and D. H. Turner, Photoselected Fluorescence Detected Circular Dichroism, J. Am. Chem. Soc. 101:2205 (1979).CrossRefGoogle Scholar
  57. 57.
    E. W. Lobenstine and D. H. Turner, Further Verification of Fluorescence Detected Circular Dichroism, J. Am. Chem. Soc. 102:7786 (1980).CrossRefGoogle Scholar
  58. 58.
    E. W. Lobenstine, W. C. Schaefer, and D. H. Turner, Fluorescence Detected Circular Dichroism of Proteins with Single Tryptophans, J. Am. Chem. Soc., in press (1981).Google Scholar
  59. 59.
    C. Reich, M. F. Maestre, S. Edmondson, and D. M. Gray, Circular Dichroism and Fluorescence-Detected Circular Dichroism of Deoxyribonucleic Acid and Poly[d(A-C) d(G-T)] in Ethanolic Solutions: A New Method for Estimating Circular Intensity Differential Scattering, Biochemistry 19:5208 (1980).CrossRefGoogle Scholar
  60. 60.
    M. F. Maestre and C. Reich, Contribution of Light Scattering to the Circular Dichroism of Deoxyribonucleic Acid Films, DNA-Polylysine Complexes, and DNA Particles in Ethanolic Buffers, Biochemistry 19:5214 (1980).CrossRefGoogle Scholar
  61. 61.
    D. W. Urry and J. Krivacic, Differential Scatter of Left and Right Circularly Polarized Light by Optically Active Particulate Systems, Proc. Natl. Acad. Sei. USA 65:845 (1970).ADSCrossRefGoogle Scholar
  62. 62.
    B. P. Dorman and M. F. Maestre, Experimental Differential Light-Scattering Correction to the Circular Dichroism of Bacteriophage T2, Proc. Natl. Acad. Sei. USA 70:255 (1973).ADSCrossRefGoogle Scholar
  63. 63.
    B. P. Dorman, J. E. Hearst, and M. F. Maestre, UV Absorption and CD Measurements on Light Scattering Biological Specimens: Fluorescent Cell and Related Large-Angle Detection Techniques, Methods in Enzymology. 270:267 (1973).Google Scholar
  64. 64.
    A. S. Schneider, M.-J. T. Schneider, K. Rosenbeck, Optical Activity of Biological Membranes: Scattering Effects and Protein Conformation, Proc. Natl. Acad. Sei. USA 66:793 (1970).ADSCrossRefGoogle Scholar
  65. 65.
    M. F. Maestre, D. M. Gray, and R. B. Cook, Magnetic Circular Dichroism Study in Synthetic Polynucleotides, Bacteriophage Structure and DNA’s, Biopolymers 10:2537 (1971).CrossRefGoogle Scholar
  66. 66.
    I. Z. Steinberg, Circularly Polarized Luminescence, Methods in Enzymology 49:179 (1978).CrossRefGoogle Scholar
  67. 67.
    I. Z. Steinberg, Circular Polarization of Luminescence: Biochemical and Biophysical Applications, Ann. Rev. Biophys. Bioeng. 7:113 (1978).CrossRefGoogle Scholar
  68. 68.
    F. S. Richardson, Circular Polarization Differentials in the Luminescence of Chiral Systems, in: “Optical Activity and Chiral Discrimination,” S. F. Mason, ed., D. Reidel, London (1979) pp. 189–218.Google Scholar
  69. 69.
    G. D. Fasman and M. K. Cowman, The All Nucleus Chromatin, Part B, H. Bush, ed.. Academic Press, New York (1978) pp. 55–57.Google Scholar
  70. 70.
    G. D. Fasman, G. Schaffhauser, L. Goldsmith, and A. Adler, Conformational Changes Associated with f-1 Histone-Deoxyribonucleci Acid Complexes. Circular Dichroism Studies, Biochemistry 9:2814 (1970).CrossRefGoogle Scholar
  71. 71.
    Y. A. Shin and G. L. Eichbom, Reversible Change in Structure of DNA-Poly(Lys) Complexes Induced by Metal Binding, Biopolymers 16:225 (1977).CrossRefGoogle Scholar
  72. 72.
    D. Carrol, Complexes of Polylysine with Polyuridylic Acid and Other Polynucleotides, Biochemistry 11:426 (1972).CrossRefGoogle Scholar
  73. 73.
    P. W. Atkins and L. D. Barron, Raleigh Scattering of Polarized Photons by Molecules, Mol. Phys. 16:453 (1969).ADSCrossRefGoogle Scholar
  74. 74.
    L. D. Barron and A. D. Buckingham, Raleigh and Raman Scatter ing from Optically Active Molecules, Mol. Phys. 20:1111 (1971).ADSCrossRefGoogle Scholar
  75. 75.
    R. A. Harris and W. M. McClain, Toward a Theory of the Perrin Matrix for Light Scattering from Dilute Polymer Solutions, J. Chem. Phys. 67:265 (1977).ADSCrossRefGoogle Scholar
  76. 76.
    C. Bustamante, M. F. Maestre, and I. Tinoco, Jr., Circular In tensity Differential Scattering of Helical Structures. I. Theory, J. Chem. Phys. 73:4273 (1980).ADSCrossRefGoogle Scholar
  77. 77.
    C. Bustamante, M. F. Maestre, and I. Tinoco, Jr., Circular Intensity Differential Scattering of Helical Structures. Applications, J. Chem. Phys. 73:6046 (1980).ADSCrossRefGoogle Scholar
  78. 78.
    C. Bustamante, M. F. Maestre, and I. Tinoco, Jr., Circular Intensity Differential Scattering of Helical Structures. General Polarizability and Anomalous Scattering, J. Chem. Phys, in press (May 15, 1981).Google Scholar
  79. 79.
    C. Bustamante, Circular Intensity Differential Scattering of Helical Molecules, Ph.D. Thesis, University of California, Berkeley (1980).Google Scholar
  80. 80.
    G. N. Watson, “Theory of Bessel Functions,” Cambridge University Press, London (1958).Google Scholar
  81. 81.
    I. Tinoco, Jr., Theoretical Aspects of Optical Activity, Part Two: Polymers, Advances in Chemical Physics 4:113 (1962).CrossRefGoogle Scholar
  82. 82.
    D. Sherwood, “Crystals, X-rays and Proteins,” Longman, New York (1976).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ignacio TinocoJr.
    • 1
  • Carlos Bustamente
    • 1
  • Marcos F. Maestre
    • 2
  1. 1.Department of Chemistry and Laboratory of Chemical BiodynamicsUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Donner Laboratory, Division of Medical PhysicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations