Potentiation of the Action of Nephrotoxic Agents by Environmental Contaminants

  • Jerry B. Hook
  • Victoria C. Serbia


The mammalian kidney, because of its high rate of perfusion, active transport capabilities, and concentrating functions, often is exposed to much higher concentrations of chemicals than are other organs. This ability of the kidney to concentrate foreign chemicals or xenobiotics usually serves to expedite the renal excretion of these compounds; however, high concentrations of xenobiotics may also predispose renal tissue to damage (Hook, 1980). Some of these chemicals may thus subsequently produce direct renal cytotoxicity. The therapeutic agent acetaminophen and widely used chemicals such as chloroform (CHC13), carbon tetrachloride (CCl4), trichloroethylene, and 1,1,2-trichloroethane are examples of xenobiotics that produce direct tissue damage. These chemicals produce identifiable lesions that may be life-threatening; however, their effects are predictable and dose-related. Other chemicals cause much more subtle perturbations. The polybrominated biphenyls (PBBs) and polychlorinated biphenyls (PCBs) are such chemicals. These environmental pollutants produce biochemical changes in the kidney that alone appear to have no functional correlation (that is, no functional nephropathy can be measured), yet they alter the response of the kidney to other chemical agents. Thus, although they produce no functional lesion, the insidiousness of their effect may present more of a hazard to man than the more predictable direct-acting nephrotoxicants (Kluwe and Hook, 1980b).


Environmental Toxicant Mercapturic Acid Aryl Hydrocarbon Hydroxylase Nephrotoxic Agent Halogenated Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadizadeh, M., Kuo, C-H.,and Hook, J. B., 1981, Nephrotoxicity and hepatotoxicity of chloroform in mice: Effect of deuterium substitution 8:105–111.Google Scholar
  2. Alvares, A. P., Fishbein, A., Anderson, K. E., and Kappas, A., 1977, Alteration in drug metabolism in workers exposed to polychlorinated biphenyls, Clin. Pharmacol. Ther. 22:140.Google Scholar
  3. Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C., 1974, The occurrence of organohalides in chlorinated drinking waters, J. Am. Water Works Assoc. 66:703.Google Scholar
  4. Boyer, T. D., and Rouff, S. L., 1971, Acetaminophen-induced necrosis and renal failure, J. Am. Med. Assoc. 218:440.CrossRefGoogle Scholar
  5. Bunn, W. W., Haas, B. B., Deane, E. R., and Klepfer, D., 1975, Formation of trihalomethanes by chlorination of surface water, Environ. Lett. 10:205.CrossRefGoogle Scholar
  6. Clark, R., Borirakchanyavat, V., Davidson, A. R., Thompson, R. P. H., Widdop, B., Goulding, R., and Williams, R., 1973, Hepatic damage and death from overdose of paracetamol, Lancet 1:66.CrossRefGoogle Scholar
  7. Gillette, J. R., 1981, An integrated approach to the study of chemically reactive metabolites of acetaminophen, Arch. Intern. Med. 141:375.CrossRefGoogle Scholar
  8. Hill, R. M., Clemens, T. L., Liu, D. K., Vesell, E. S., and Johnson, W. D., 1975, Genetic control of chloroform toxicity in mice, Science 190:159.CrossRefGoogle Scholar
  9. Hinson, J. A., Pohl, L. R., Monks, T. J., and Gilette, J. R., 1981, Acetaminophen-induced hepatotoxicity—Minireview, Life Sci. 29:107.CrossRefGoogle Scholar
  10. Hook, J. B., 1980, Toxicology of the kidney, in: Casarett and Doull’s Toxicology: The Basic Science of Poisons (J. Doull, C. D. Klassen, and M. D. Amdur, eds.), Macmillan, New York, p. 232.Google Scholar
  11. Hook, J. B., McCormack, K. M., and Kluwe, W. M., 1979, Biochemical mechanisms of nephrotoxicity, in: Reviews in Biochemical Toxicology, (E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier/North-Holland, New York, p. 53.Google Scholar
  12. Jollow, D. J., Mitchell, J. R., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie, B. B., 1973, Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther. 187:195.Google Scholar
  13. Kay, K., 1977, Polybrominated biphenyls (PBB) environmental contamination in Michigan, 1973–1976, Environ. Res. 13:74.CrossRefGoogle Scholar
  14. Kleinman, J. G., Breitenfield, R. V., and Rothr D. A., 1980, Acute renal failure associated with acetaminophen ingestion: Report of a case arid review of the literature, Clin. Nephrol. 14:210.Google Scholar
  15. Kluwe, W. M., and Hook, J. B., 1978, Polybrominated biphenyl-induced potentiation of chloroform toxicity, Toxicol. Appl. Pharmacol. 45:861.CrossRefGoogle Scholar
  16. Kluwe, W. M. and Hook, J. B., 1980a, Metabolic activation of nephrotoxic haloalkanes, Fed. Proc. 39:3129.Google Scholar
  17. Kluwe, W. M., and Hook, J. B., 1980b, Effects of environmental chemicals on kidney metabolism and function, Kidney Int. 18:648.CrossRefGoogle Scholar
  18. Kluwe, W. M., and Hook, J. B., 1981, Potentiation of acute chloroform nephrotoxicity by the glutathione depletor diethyl maleate and protection by the microsomal enzyme inhibitor piperonyl butoxide, Toxicol. Appl. Pharmacol. 59:457.CrossRefGoogle Scholar
  19. Kluwe, W. M., McCormack, K. M., and Hook, J. B., 1978, Selective modification of renal and hepatic toxicities of chloroform by induction of drug metabolizing enzyme systems in the kidney and liver, J. Pharmacol. Exp. Ther. 207:566.Google Scholar
  20. Kluwe, W. M., Herman, C. L., and Hook, J. B., 1979, Effects of dietary polychlorinated biphenyls and polybrominated biphenyls on the renal and hepatic toxicities of several chlorinated hydrocarbon solvents in mice, J. Pharmacol. Exp. Ther. 5:605.Google Scholar
  21. Mansuy, D., Beune, P., Crestell, T., Lange, M., and Leroux, J. P., 1977, Evidence for phosgene formation during liver microsomal oxidation of chloroform, Biochem. Biophys. Res. Commun. 79:513.CrossRefGoogle Scholar
  22. Mathews, H. B., Kato, S., Morales, N. M., and Tuey, D. B., 1977, Distribution and excretion of 2,4,5,2′,4′,5′-hexabromobiphenyl, the major component of Firemaster BP-6, J. Toxicol. Environ. Health 3:599.CrossRefGoogle Scholar
  23. Mathews, H., Fries, G., Gardner, A., Garthoff, L., Goldstein, J., Ku, Y., and Moore, J., 1978, Metabolism and biochemical toxicity of PCPs ana PBBs, Environ. Health Persp. 24:147.CrossRefGoogle Scholar
  24. McCormack, K. M., Kluwe, W. M., Rickert, D. E., and Sanger, V. L., and Hook, J. B., 1978, Renal and hepatic microsomal enzyme stimulation and renal function following three month dietary exposure to polybrominated biphenyls, Toxicol. Appl. Pharmacol. 44:539.CrossRefGoogle Scholar
  25. McCormack, K. M., Lepper, L. F., Wilson, D. M., and Hook, J. B., 1981, Biochemical and physiological sequelae to perinatal exposure to polybrominated biphenyls: A multigenaration study in rats. Toxicol. Appl. Pharmacol. 59:300–313.CrossRefGoogle Scholar
  26. McMurty, R. J., Snodgrass, W. R.,and Mitchell, J. R., 1978, Renal necrosis, glutathione depletion and covalent binding after acetaminophen, J. Toxicol. Appl. Pharmacol. 46:87.CrossRefGoogle Scholar
  27. Mitchell, J. R., Jollow, D. J., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie, B. B., 1973a, Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism, J. Pharmacol. Exp. Ther. 187:185.Google Scholar
  28. Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R., and Brodie, B. B., 1973b, Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Ther. 187:211.Google Scholar
  29. Moorehead, P. D., Willett, L. B., Brumm, C. J., and Mercer, H. D., 1977, Pathology of experimentally induced polybrominated biphenyl toxicosis in pregnant heifers, J. Am. Vet. Med. Assoc. 170:307.Google Scholar
  30. Pohl, L. R., and Krishna, G., 1978, Deuterium isotope effect in bioactivation and hepatotoxicity of chloroform, Life Sci. 23:1067.CrossRefGoogle Scholar
  31. Pohl, L. R., Bhooshan, B., Whittaker, N. F., and Kirshna, G., 1977, Phosgene: A metabolite of chloroform, Biochem. Biophys. Res. Commun. 79:684.CrossRefGoogle Scholar
  32. Pohl, L. R., George, J. W., Martin, J. L., and Kirshna, G., 1979, Dueterium isotope effect in vivo bioactivation of chloroform to phosgene, Biochem. Pharmacol. 28:561.CrossRefGoogle Scholar
  33. Potter, W. Z., Davis, D. C., Mitchell, J. R., Jollow, D. J., Gillette, J. R., and Brodie, B. B., 1973, Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro, J. Pharmacol. Exp. Ther. 187:203.Google Scholar
  34. Rechnagel, O. R., and Glende, E. A., 1973, Carbon tetrachloride hepatotoxicity: An example of lethal cleavage, CRC Crit. Rev. Toxicol 2:263–297.CrossRefGoogle Scholar
  35. Scholler, K. L., 1970, Modification of the effects of chloroform on the rat liver, Br. J. Anesthesiol. 42:602.Google Scholar
  36. Sipes, I. G., Krishna, G., and Gillette, J. R., 1977, Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: Role of cytochrome P-450, Life Sci. 20:1541.CrossRefGoogle Scholar
  37. Slater, T. F., 1972, Free Radical Mechaniams in Tissue Injury, Pion, London.Google Scholar
  38. Striker, G. E., Smuckler, E. A., Kohnon, P. W., and Nagle, R. B., 1968, Structural and functional changes in rat kidney during CCl4 intoxication, Am. J. Pathol. 53:769.Google Scholar
  39. Von Oettingen, W. F., 1964, The Halogenated Hydrocarbons of Industrial and Toxicological Importance, Elsevier, Amsterdam, p. 77.Google Scholar
  40. Watrous, W. M., and Plaa, G. L., 1972, Effect of halogenated hydrocarbons on organic ion accumulation by renal cortical slices of rats and mice, Toxicol. Appl. Pharmacol. 22:528.CrossRefGoogle Scholar
  41. Winslow, S. G., and Gerstner, H. B., 1978, Health aspects of chloroform—A review, Drug. Chem. Toxicol. 1:259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Jerry B. Hook
    • 1
  • Victoria C. Serbia
    • 1
  1. 1.Center for Environmental ToxicologyMichigan State UniversityEast LansingUSA

Personalised recommendations