Analgesic Nephropathy

Renal Drug Distribution and Metabolism
  • Gilbert H. Mudge


The pharmacologic factors which underlie analgesic nephropathy may best be considered in relation to several features which have been adequately documented by clinical experience: first, the disease results from the ingestion of analgesics over a long period of time and in fairly large daily doses; second, unlike many other drug-induced nephropathies, the primary lesion occurs in the medulla with secondary involvement of the cortex; and third, the disorder may be acutely aggravated by dehydration and oliguria (Duggin, 1980). Taken together, these three features strongly suggest that the disorder results from a high concentration of the offending agent or agents in the urine or, more properly, in the tubular fluid of the distal nephron. Parenthetically, for most of this discussion medulla and papilla will be used somewhat interchangeably.


Drug Metabolism Parent Drug Covalent Binding Reactive Metabolite Distal Nephron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernheim, F., Bernheim, M. L. C., and Michael, H. O., 1937, The action of p-aminophenol on certain tissue oxidations, J. Pharmacol Exp. Ther. 61:311.Google Scholar
  2. Brodie, B. B., and Axelrod, J., 1949, The fate of acetophenetidin (phenacetin) in man and methods for the estimation of acetophenetidin and its metabolites in biological material, J. Pharmacol. Exp. Ther. 95:58.Google Scholar
  3. Burry, A., Cross, R., and Axelsen, R., 1977, Analgesic nephropathy and the renal concentrating mechanism, in: Pathology Annual, Part 2 (S. S. Sommers and R. P. Rosen, eds.), Appleton-Century-Crofts, New York, p. 1.Google Scholar
  4. Calder, I. C., Williams, P. J., Woods, R. A., Funder, C. C., Green, C. R., Ham, K. N., and Tange, J. D., 1975, Nephrotoxicity and molecular structure, Xenobiotica 5:303.CrossRefGoogle Scholar
  5. Calder, I. C., Yong, A. C., Woods, R. A., Crowe, C. A., Ham, K. N., and Tange, J. D., 1979, The nephrotoxicity of p-aminophenol. II. The effect of metabolic inhibitors and inducers, Chem.-Biol. Interactions 27:245.CrossRefGoogle Scholar
  6. Carpenter, H. M., III, 1978, Mechanisms of the nephrotoxicity of acetaminophen studied in the mouse kidney cortex slice system, PhD Thesis, Dartmouth College, Hanover, New Hampshire.Google Scholar
  7. Dubach, U. C., 1978, Nephropathies due to analgesics, Contrib. Nephrol. 10:75.Google Scholar
  8. Dubach, U. C., and Raaflaub, J., 1969, Neue aspekte zur frage der nephrotoxizitat von phenacetin, Experentia 25:956.CrossRefGoogle Scholar
  9. Duggin, G. G., 1980, Mechanisms in the development of analgesic nephropathy, Kidney Int. 18:553.CrossRefGoogle Scholar
  10. Duggin, G. G., and Mudge, G. H., 1975, Renal tubular transport of paracetamol and its conjugates in the dog, Br. J. Pharmacol. 54:359.CrossRefGoogle Scholar
  11. Duggin, G. G., and Mudge, G. H., 1976a, Analgesic nephropathy: Renal distribution of acetaminophen and its conjugates, J. Pharmacol. Exp. Ther. 199:1.Google Scholar
  12. Duggin, G. G., and Mudge, G. H., 1976b, Phenacetin: renal tubular transport and intrarenal distribution in the dog, J. Pharmacol. Exp. Ther. 199:10.Google Scholar
  13. Gemborys, M. W., Mudge, G. H. and Gribble, G. W., 1980, Mechanism of decomposition of N-hydroxyacetaminophen, a postulated toxic metabolite of acetaminophen, J. Med. Chem. 23:304.CrossRefGoogle Scholar
  14. Hinson, J. A., 1980, Biochemical toxicology of acetaminophen, in: Reviews in Biochemical Toxicology, Volume 2 (E. Hodgson, J. R. Bend, and R. M. Philpot, eds.) Elsevier/North-Holland, New York, p. 103.Google Scholar
  15. Hinson, J. A., Pohl, L. R., and Gillette, J. R., 1979, N-Hydroxyacetamimophen: A microsomal metabolite of N-hydroxyphenacetin but apparently not of acetaminophen, Life Sci. 24:2133.CrossRefGoogle Scholar
  16. Hinson, J. A., Pohl, L. R., Monks, T. J., Gillette, J. R., and Guengerich, F. P., 1980, 3-Hydroxyace-taminophen: A microsomal metabolite of acetaminophen. Evidence against an epoxide as the reactive metabolite of acetaminophen, Drug Metab. Dispos. 8:289.Google Scholar
  17. Jones, D. P., Sundby, G., Ormstad, K., and Orrenius, S., 1979, Use of isolated kidney cells for study of drug metabolism, Biochem. Pharmacol. 28:929.CrossRefGoogle Scholar
  18. Levvy, G. A., and Conchie, J., 1966, β-Glucuronidase and the hydrolysis of glucuronides, in: Glucuronic Acid, Free and Combined (G. J. Dutton, ed.), Academic Press, New York, p. 301.Google Scholar
  19. Margetts, G., 1976, Phenacetin and paracetamol, J. Internat. Med. Res. 4:(Suppl. 4):55.Google Scholar
  20. McMurtry, R. J., Snodgrass, W. R., and Mitchell, J. R., 1978, Renal necrosis, glutathione depletion, and covalent binding after acetaminophen, Toxicol. Appl. Pharmacol. 46:87.CrossRefGoogle Scholar
  21. Miner, D. J., and Kissinger, P. T., 1979, Evidence for the involvement of N-acetyl-p-quinoneimine in acetaminophen metabolism, Biochem. Pharmacol. 28:3285.CrossRefGoogle Scholar
  22. Mrochek, J. E., Katz, S., Christie, W. H., and Dinsmore, S. R., 1974, Acetaminophen metabolism in man, as determined by high-resolution liquid chromatography, Clin. Chem. 20:1086.Google Scholar
  23. Mudge, G. H., Gemborys, M. W., and Duggin, G. G., 1978, Covalent binding of metabolites of acetaminophen to kidney protein and depletion of renal glutathione, J. Pharmacol. Exp. Ther. 206: 218.Google Scholar
  24. Nelson, S. D., Forte, A. J., and Dahlin, D. C., 1980, Lack of evidence for N-hydroxyacetaminophen as a reactive metabolite of acetaminophen in vitro, Biochem. Pharmacol. 29:1617.CrossRefGoogle Scholar
  25. Nery, R., 1971, The possible role of N-hydroxylation in the biological effects of phenacetin, Xenobiotica 1:339.CrossRefGoogle Scholar
  26. Rollins, D. E., and Buckpitt, A. R., 1979, Liver cytosol catalyzed conjugation of reduced glutathione with a reactive metabolite of acetaminophen, Toxicol. Appl. Pharmacol. 47:331.CrossRefGoogle Scholar
  27. Roof, B. S., and Turner, J. C., 1955, Protein interactions of gentisic acid and certain of its oxidation products, J. Clin. Invest. 34:1647.CrossRefGoogle Scholar
  28. Rosner, I., 1976, Experimental analgesic nephropathy, CRC Crit. Rev. Toxicol. 4:331.Google Scholar
  29. Ross, B., Tange, J., Enslie, K., Hart, S., Smail, M., and Calder, I., 1980, Paracetamol metabolism by the isolated pufused rat kidney, Kidney Int. 18:562.CrossRefGoogle Scholar
  30. Smith, J. N., and Williams, R. T., 1949, Studies in detoxication 23. The fate of aniline in the rabbit, Biochem. J. 44:242.Google Scholar
  31. Smith, P. K., 1958, Acetophenetidin, A Critical Bibliographic Review, Interscience, New York.Google Scholar
  32. Welch, R. M., Conney, A. H., and Burns, J. J., 1966, The metabolism of acetophenetidin and N-acetyl-p-aminophenol in the cat, Biochem. Pharmacol. 15:521.CrossRefGoogle Scholar
  33. Wheldrake, J. F., 1975, The effect of aspirin (acetyl salicylate) on macromolecule turnover in rat kidney and liver, Experentia 31:559.CrossRefGoogle Scholar
  34. Zenser, T. V., Mattammal, M. B., and Davis, B. B., 1978, Differential distribution of the mixed-function oxidase activities in rabbit kidney, J. Pharmacol. Exp. Ther. 207:719.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Gilbert H. Mudge
    • 1
  1. 1.Departments of Medicine, Pharmacology, and ToxicologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations