Principles of Compartmentation

  • N. M. van Gelder


Compartmentation in biochemical terms refers to the separation of metabolic processes that together constitute a metabolic cycle. Examples of such cycles come readily to mind and include protein synthesis, the urea cycle, and the metabolism of glutamic acid. Typically, all cycles require a number of precisely sequenced metabolic steps which are not incorporated into a single anatomic entity. Therefore, any substance not immediately broken down by only one enzyme to CO2, H2O, or another excretion product may be considered to exhibit a compartmentalized metabolism. Each enzyme constitutes a distinct catalytic surface and hence a unique structure.1,2 In the course of its metabolism, a substance may be passed on many times from one specialized affinity site to another while its molecular structure is being rearranged, added to, or broken down. Thus, in addition to involving more than one anatomic element, compartmentation must also always include some type(s) of transfer or transport system(s). This is especially true when biochemical compartmentation involves more than one intracellular membrane-enclosed organelle or different cells of the same organ.


Glutamic Acid Nervous Tissue Tissue Preparation High Specific Activity Amino Acid Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cornforth, J. W., 1976, Science 193:121–125.PubMedCrossRefGoogle Scholar
  2. 2.
    Cram, D. J., and Cram, J. M., 1974, Science 183:803–809.PubMedCrossRefGoogle Scholar
  3. 3.
    Walsh, C. (ed.), 1979, Enzymatic Reaction Mechanisms, W. H. Freeman, San Francisco, pp. 891–916.Google Scholar
  4. 4.
    Glees, P., 1973, Metabolic Compartmentation in the Brain (R. Balazs, and J. E. Cremer, eds.), Macmillan, London, pp. 209–231.Google Scholar
  5. 5.
    Bock, E., 1978, J. Neurochem. 30:7–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Kolber, A. R., Bagnell, C. R., Krigman, M. R., Hayward J., and Morell, P., 1979, J. Neurochem. 33:419–432.PubMedCrossRefGoogle Scholar
  7. 7.
    Lajtha, A., and Ford, D. H. (eds.), 1968, Brain Barrier Systems (Prog. Brain Res. Volume 29), Elsevier, Amsterdam.Google Scholar
  8. 8.
    Lund-Andersen, H., 1979, Physiol. Rev. 59:305–352.PubMedGoogle Scholar
  9. 9.
    McGale, E. H. F., Pye, I. F., Stonier, C., Hutchinson, E. C., and Aber, G. M., 1977, J. Neurochem. 29:291–297.PubMedCrossRefGoogle Scholar
  10. 10.
    Oldendorf, W. H., and Braun, L. D., 1976, Brain Res. 113:219–224.PubMedCrossRefGoogle Scholar
  11. 11.
    Pardridge, W. M. and Oldendorf, W. H., 1977, J. Neurochem. 28:5–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Aguayo, A. J., Charron, L., and Bray, G. M., 1976, J. Neurocytol. 5:565–573.PubMedCrossRefGoogle Scholar
  13. 13.
    Benjamins, J. A., and Morell, P., 1978, Neurochem. Res. 3:137–174.PubMedCrossRefGoogle Scholar
  14. 14.
    Cochran, F. B., Yu, R. K., Ando, S., and Ledeen, R. W., 1981, J. Neurochem. 36:696–702.PubMedCrossRefGoogle Scholar
  15. 15.
    Eylar, E. H., Jackson, J. J., and Kniskern, P. J., 1979, Neurochem. Res. 4:249–258.PubMedCrossRefGoogle Scholar
  16. 16.
    Hashim, G., Sharpe, R. D., Carvalho, E. F., and Stevens, L. E., 1976, J. Immunol. 116:126–130.PubMedGoogle Scholar
  17. 17.
    Rasminsky, M., 1978, Physiology and Pathobiology of Axons (S. G. Waxman, ed.), Raven Press, New York, pp. 361–376.Google Scholar
  18. 18.
    Weinberg, H. J., and Spencer, P. S., 1976, Brain Res. 113:363–378.PubMedCrossRefGoogle Scholar
  19. 19.
    Berl, S., Lajtha, A., and Waelsch, H., 1961, J. Neurochem. 7:186–187.CrossRefGoogle Scholar
  20. 20.
    Henn, F. A., Goldstein, M. N., and Hamberger, A., 1974, Nature 249:663–664.PubMedCrossRefGoogle Scholar
  21. 21.
    Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D., 1977, Science 195:1356–1358.PubMedCrossRefGoogle Scholar
  22. 22.
    Minchin, M. C. W., 1977, Exp. Brain Res. 29:515–526.PubMedCrossRefGoogle Scholar
  23. 23.
    Norenberg, M. D., and Martinez-Hernandez, A., 1979, Brain Res. 161:303–310.PubMedCrossRefGoogle Scholar
  24. 24.
    Schousboe, A., Hertz, L., Svenneby, G., and Kvamme, E., 1979, J. Neurochem. 32:943–950.PubMedCrossRefGoogle Scholar
  25. 25.
    Walum, E., 1979, Biochem. Biophys. Res. Commun. 88:1271–1274.PubMedCrossRefGoogle Scholar
  26. 26.
    DeVivo, D. C., Leckie, M. P., and Agrawal, H. C., 1975, J. Neurochem. 25:161–170.PubMedCrossRefGoogle Scholar
  27. 27.
    Drummond, R. J., and Phillips, A. T., 1977, J. Neurochem. 29:101–108.PubMedCrossRefGoogle Scholar
  28. 28.
    Tursky, T., Ruscak, M., Lassanova, M., and Ruscakova, D., 1979, J. Neurochem. 33:1209–1215.PubMedCrossRefGoogle Scholar
  29. 29.
    Tursky, T., Ruscak, M., and Lassanova, M., 1979, Physiol. Bohemoslov. 23:43–49.Google Scholar
  30. 30.
    Weyne, J., van Leuven, F., Demeester, G., and Leusen, I., 1977, J. Neurochem. 29:469–476.PubMedCrossRefGoogle Scholar
  31. 31.
    Giacobini, E., 1962, J. Neurochem. 9:169–177.PubMedCrossRefGoogle Scholar
  32. 32.
    Kornblath, J. A., 1980, Can. J. Biochem. 58:840–850.CrossRefGoogle Scholar
  33. 33.
    Mandel, P., Roussel, G., Delaunoy, J.-P., and Nussbaum, J.-L., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Academic Press, New York, pp. 619–630.Google Scholar
  34. 34.
    Parthe, V., 1981, J. Neurosci. Res. 6:119–131.PubMedCrossRefGoogle Scholar
  35. 35.
    Schousboe, A., Nissen, C., Bock, E., Sapirstein, V. S., Juurlink, B. H. J., and Hertz, L., 1980, Tissue Culture in Neurobiology (A. Vernadakis and E. Giacobini, eds.), Raven Press, New York, pp. 397–409.Google Scholar
  36. 36.
    Davis, B. D., 1971, Nature 231:153–157.PubMedCrossRefGoogle Scholar
  37. 37.
    Fulks, R. M., Li, J. B., and Goldberg, A. L., 1975, J. Biol. Chem. 250:290–298.PubMedGoogle Scholar
  38. 38.
    Goldfine, I. D., Jones, A. L., Hradek, G. T., Wong, K. Y., and Mooney, J. S., 1978, Science 202:760–762.PubMedCrossRefGoogle Scholar
  39. 39.
    Gullis, R. J., and Rowe, C. E., 1975, Biochem. J. 148:197–208.PubMedGoogle Scholar
  40. 40.
    Holtzman, E., 1977, Neuroscience 2:327–355.PubMedCrossRefGoogle Scholar
  41. 41.
    Kurokawa, M., Tashiro, T., Mizobe, F., and Setani, N., 1973, FEBS Lett. 34:165–168.PubMedCrossRefGoogle Scholar
  42. 42.
    Lajtha, A., Dunlop, D., Patlak, C., and Toth, J., 1979, Biochim. Biophys. Acta 561:491–501.PubMedCrossRefGoogle Scholar
  43. 43.
    Mains, R. E., and Eipper, B. A., 1980, Ann. N.Y. Acad. Sci. 343:94–108.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Malley, B. W., and Means, A. R., 1974, Science 183:610–619.PubMedCrossRefGoogle Scholar
  45. 45.
    Parks, J. M., Ames, A., and Nesbett, F. B., 1976, J. Neurochem. 27:987–997.PubMedCrossRefGoogle Scholar
  46. 46.
    Potts, J. T., Kronenberg, H. M., Habener, J. F., and Rich, A., 1980, Ann. N.Y. Acad. Sci. 343:38–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Sauvageau, M. A., 1975, Nature 258:208–214.CrossRefGoogle Scholar
  48. 48.
    Sutherland, E. W., 1972, Science 177:401–408.PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi, Y., Araki, K., and Suzuki, Y., 1971, Brain Res. 32:179–188.PubMedCrossRefGoogle Scholar
  50. 50.
    Tomkins, G. M., 1975, Science 189:760–763.PubMedCrossRefGoogle Scholar
  51. 51.
    Wickner, W. 1980, Science 210:861–868.PubMedCrossRefGoogle Scholar
  52. 52.
    Costa-Tiozzo, R., and Gal, E. M., 1980, Neurochem. Res. 5:23–36.PubMedCrossRefGoogle Scholar
  53. 53.
    Dennis, S. C., Lai, J. C. K., and Clark, J. B., 1977, Biochem. J. 164:727–736.PubMedGoogle Scholar
  54. 54.
    Dennis, S. G. C., and Clark, J. B., 1978, J. Neurochem. 31:673–680.PubMedCrossRefGoogle Scholar
  55. 55.
    Simpson, D. P., and Adam, W., 1975, J. Biol. Chem. 250:8148–8158.PubMedGoogle Scholar
  56. 56.
    Von Korff, R. W., and Kerpel-Fronius, S., 1975, J. Neurochem. 25:767–778.CrossRefGoogle Scholar
  57. 57.
    Blaustein, M. P., and Goldring, J. M., 1975, J. Physiol. (Lond.) 247:589–615.Google Scholar
  58. 58.
    Bradford, H. F., Bennett, G. W., and Thomas, A. J., 1973, J. Neurochem. 21:495–505.PubMedCrossRefGoogle Scholar
  59. 59.
    Chaplin, E. R., Golberg, A. L., and Diamond, I., 1976, J. Neurochem. 26:701–707.PubMedCrossRefGoogle Scholar
  60. 60.
    Coyne, L. M., 1979, J. Theor. Biol. 79:455–472.PubMedCrossRefGoogle Scholar
  61. 61.
    De Belleroche, J. S., and Bradford, H. F., 1977, J. Neurochem. 29:335–343.PubMedCrossRefGoogle Scholar
  62. 62.
    Fishman, P. H., and Brady, R. O., 1976, Science 194:906–915.PubMedCrossRefGoogle Scholar
  63. 63.
    Hammerstad, J. P., Cawthorn, M. L., and Lytle, C. R., 1979, J. Neurochem. 32:195–202.PubMedCrossRefGoogle Scholar
  64. 64.
    Iadorola, M. J., and Gale, K., 1979, Eur. J. Pharmacol. 59:125–129.CrossRefGoogle Scholar
  65. 65.
    Kvamme, E., 1979, GABA—Biochemistry and CNS Functions (P. Mandel and F. V. deFeudis, eds.), Plenum Press, New York, pp. 111–138.Google Scholar
  66. 66.
    Levi, G., and Raiteri, M., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:2981–2985.PubMedCrossRefGoogle Scholar
  67. 67.
    Sieghart, W., and Karobath, M., 1974, J. Neurochem. 23:911–915.PubMedCrossRefGoogle Scholar
  68. 68.
    Zisapel, N., and Zurgil, N., 1979, Brain Res. 178:297–310.PubMedCrossRefGoogle Scholar
  69. 69.
    Anderson, C. M., Zucker, F. H., and Steilz, T. A., 1979, Science 204:375–380.PubMedCrossRefGoogle Scholar
  70. 70.
    Buu, N. T., Puil, E., and van Gelder, N. M., 1976, Gen. Pharmacol. 7:5–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Enna, S. J., and Synder, S. H., 1975, Brain Res. 100:81–97.PubMedCrossRefGoogle Scholar
  72. 72.
    Friedberg, F., 1977, Horizons Biochem. Biophys. 4:63–90.Google Scholar
  73. 73.
    Glowinski, J., and Iversen, L. L., 1966, J. Neurochem. 13:655–669.PubMedCrossRefGoogle Scholar
  74. 74.
    Krogsgaard-Larsen, P., Johnston, G. A. R., Curtis, D. R., Game, A., and McCulloch, R. M., 1975, J. Neurochem. 25:803–809.PubMedCrossRefGoogle Scholar
  75. 75.
    Meldrum, B., Pedley, T., Horton, R., Anlezark, G., and Franks, A., 1980, Brain Res. Bull. 5(Suppl. 2):685–690.CrossRefGoogle Scholar
  76. 76.
    Napias, C., Bergman, M. O., Van Ness, P. C., Greenlee, D. V., and Olson, R. W., 1980, Life Sci. 27:1001–1011.PubMedCrossRefGoogle Scholar
  77. 77.
    Nistsi, A., and Constanti, A., 1979, Prog. Neurobiol. 13:117–235.CrossRefGoogle Scholar
  78. 78.
    Reisine, T. D., Wastek, G. J., Speth, R. C., Bird, E. D., and Yamamura, H. I., 1979, Brain Res 165:183–187.PubMedCrossRefGoogle Scholar
  79. 79.
    Toffano, G., Guidotti, A., and Costa, E., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:4024–4028.PubMedCrossRefGoogle Scholar
  80. 80.
    Balazs, R., and Cremer, J. E. (eds.), 1973, Metabolic Compartmentation in the Brain: Models of Metabolic Compartmentation, Macmillan, London, pp. 121–186.Google Scholar
  81. 81.
    Berl, S., 1973, Metabolic Compartmentation in the Brain (R. Balazs and J. E. Cremer, eds.), Macmillan, London, pp. 3–17.Google Scholar
  82. 82.
    Lajtha, A., Berl, S., and Waelsch, H., 1959, J. Neurochem. 3:322–332.PubMedCrossRefGoogle Scholar
  83. 83.
    Palade, G., 1975, Science 189:347–358.PubMedCrossRefGoogle Scholar
  84. 84.
    Patel, A. J., Johnson, A. L., and Balazs, R., 1974, J. Neurochem. 23:1271–1279.PubMedCrossRefGoogle Scholar
  85. 85.
    Ratner, S., 1979, Ann. N.Y. Acad. Sci. 325:189–206.CrossRefGoogle Scholar
  86. 86.
    van Gelder, N. M., 1978, Can. J. Physiol. Pharmacol. 56:362–374.PubMedCrossRefGoogle Scholar
  87. 87.
    Benjamin, A. M., and Quastel, J. H., 1976, J. Neurochem. 26:431–441.PubMedCrossRefGoogle Scholar
  88. 88.
    DiRocco, R. J., and Hall, W. G., 1980, J. Neurosci. Res. 6:13–19.CrossRefGoogle Scholar
  89. 89.
    Elliott, K. A. C., and van Gelder, N. M., 1958, J. Neurochem. 3:28–40.PubMedCrossRefGoogle Scholar
  90. 90.
    Hawkins, R. A., and Miller, A. L., 1978, Neuroscience 3:251–258.PubMedCrossRefGoogle Scholar
  91. 91.
    Lähdesmäki, P., Karppinen, A., Saarni, H., and Winter, R., 1977, Brain Res. 38:295–308.CrossRefGoogle Scholar
  92. 92.
    Levi, G., Gallo, V., Ciotti, T., and Raiteri, M., 1979, J. Neurochem. 33:1043–1053.CrossRefGoogle Scholar
  93. 93.
    Levi, G., Gallo, V., and Raiteri, M., 1980, Neurochem. Res. 5:281–295.PubMedCrossRefGoogle Scholar
  94. 94.
    Moscowitz, J. A., and Cutler, R. W. P., 1980, J. Neurochem. 35:1394–1399.PubMedCrossRefGoogle Scholar
  95. 95.
    Nadler, J. V., White, W. F., Vaca, K. W., Redburn, D. A., and Cotman, C. W., 1977, J. Neurochem. 29:279–290.PubMedCrossRefGoogle Scholar
  96. 96.
    Oja, S. S., and Kontro, P., 1980, J. Neurochem. 36:1303–1308.CrossRefGoogle Scholar
  97. 97.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, J. Neurochem. 28:897–916.PubMedCrossRefGoogle Scholar
  98. 98.
    Stump, D. A., and Williams, R., 1980, Brain Lang. 9:35–46.PubMedCrossRefGoogle Scholar
  99. 99.
    van Gelder, N. M., 1982, Taurine in Nutrition and Neurology (H. Pasantes-Morales and R. Huxtable, eds.), Plenum Press, New York, pp. 239–256.CrossRefGoogle Scholar
  100. 100.
    Wheeler D. D., and Hollingsworth, R. G., 1979, J. Neurosci. Res. 4:265–289.PubMedCrossRefGoogle Scholar
  101. 101.
    Wheeler, D. D., 1980, Pharmacology 21:141–152.PubMedCrossRefGoogle Scholar
  102. 102.
    Cremer, J. E., Heath, D. F., Teal, H. M., Woods, M. S., and Cavanagh, J. B., 1975, Neuropathol. Appl. Neurobiol. 3:293–311.CrossRefGoogle Scholar
  103. 103.
    Dirks, B., Hanke, J., Krieglstein, J., Stock, R., and Wickop, G., 1980, J. Neurochem. 35:311–317.PubMedCrossRefGoogle Scholar
  104. 104.
    Gainer, H., Barker, J. L., and Wollberg, Z., 1975, J. Neurochem. 25:177–179.PubMedCrossRefGoogle Scholar
  105. 105.
    Gaitonde, M. K., Wharton, J., and Holt, E., 1977, J. Neurochem. 29:127–133.PubMedCrossRefGoogle Scholar
  106. 106.
    Gorell, J. M., Dolkhart, P. H., and Ferrendelli, J. A., 1976, J. Neurochem. 27:1043–1049.PubMedCrossRefGoogle Scholar
  107. 107.
    Gregoire, N. M., Gjedde, A., Plum, F., and Duffy, T. E., 1978, J. Neurochem. 30:63–69.PubMedCrossRefGoogle Scholar
  108. 108.
    Lajtha, A., and Sershen, H., 1980, The Blood-Retinal Barriers (J. G. Cunha-Vaz, ed.), Plenum Press, New York, pp. 119–132.Google Scholar
  109. 109.
    Möhler, H., Patel, A. J., and Balazs, R., 1974, J. Neurochem. 23:1281–1289.PubMedCrossRefGoogle Scholar
  110. 110.
    Mrsulja, B. B., Lust, W. D., Mrsulja, B. J., Passonau, J. V., and Klatzo, I., 1976, J. Neurochem. 26:1099–1103.CrossRefGoogle Scholar
  111. 111.
    Norberg, K., and Siesjö, B. K., 1976, J. Neurochem. 26:345–352.PubMedCrossRefGoogle Scholar
  112. 112.
    Phelps, M. E., Kuhl, D. E., and Mazziota, J. C., 1981, Science 211:1445–1448.PubMedCrossRefGoogle Scholar
  113. 113.
    Roberts, F., Pearce, M., and Taberner, P. V., 1980, Brain Res. 201:431–435.PubMedCrossRefGoogle Scholar
  114. 114.
    Tyce, G. M., Ogg, J., and Owen, C. A., 1981, J. Neurochem. 36:640–650.PubMedCrossRefGoogle Scholar
  115. 115.
    Woznicki, D. T., and Walker, J. B., 1980, J. Neurochem. 34:1247–1253.PubMedCrossRefGoogle Scholar
  116. 116.
    Berl, S., and Purpura, D. P., 1966, J. Neurochem. 13:293–304.CrossRefGoogle Scholar
  117. 117.
    Borg, J., Ramaharobandro, N., Mark, J., and Mandel, P., 1980, J. Neurochem. 34:1113–1122.PubMedCrossRefGoogle Scholar
  118. 118.
    Himwich, W. (ed.), 1973, Biochemistry of the Developing Brain, Volume 1, Marcel Dekker, New York.Google Scholar
  119. 119.
    Hommes, F. A., and Van den Berg, C. J., (eds.), 1975, Normal and Pathological Development of Energy Metabolism, Academic Press, New York.Google Scholar
  120. 120.
    Lajtha, A., Dunlop, D., Patlak, C., and Toth, J., 1979, Biochim. Biophys. Acta 561:491–501.PubMedCrossRefGoogle Scholar
  121. 121.
    Levitsky, D. A. (ed.), 1979, Malnutrition, Environment, and Behavior, Cornell University Press, Ithaca.Google Scholar
  122. 122.
    Nehlig, A., Moncotel, D., and Lehr, P. R., 1980, Life Sci. 27:483–489.PubMedCrossRefGoogle Scholar
  123. 123.
    van Gelder, N. M., 1981, Amino Acid Transmitters (P. Mandel and F. V. DeFeudis, eds.), Raven Press, New York, pp. 115–125.Google Scholar
  124. 124.
    Vanucci, S. J., and Vanucci, R. C., 1980, J. Neurochem. 34:1100–1105.CrossRefGoogle Scholar
  125. 125.
    Winick, M., 1975, Adv. Neurol. 13:193–246.PubMedGoogle Scholar
  126. 126.
    Benjamin, A. M., Verjee, Z. H., and Quastel, J. H., 1980, J. Neurochem. 35:78–87.PubMedCrossRefGoogle Scholar
  127. 127.
    Dingledine, R., Dodd, J., and Kelly, J. S., 1980, J. Neurosci. Methods 2:323–362.PubMedCrossRefGoogle Scholar
  128. 128.
    Lynch, G., 1980, Annu. Rev. Neurosci. 3:1–22.PubMedCrossRefGoogle Scholar
  129. 129.
    McIlwain, H., and Bachelard, H. S. (eds.), 1971, Biochemistry and the Central Nervous System, Churchill Livingstone, Edinburgh, pp. 61–97.Google Scholar
  130. 130.
    Neal, M. J., and Bowery, N. G., 1979, Brain Res. 167:337–343.PubMedCrossRefGoogle Scholar
  131. 131.
    Orrego, F., Miranda, R., and Saldate, C., 1976, Neuroscience 1:325–332.PubMedCrossRefGoogle Scholar
  132. 132.
    Teyler, T. J., 1980, Brain Res. Bull. 5:391–403.PubMedCrossRefGoogle Scholar
  133. 133.
    Weil-Malherbe, H., and Gordon, J., 1971, J. Neurochem. 18:1659–1672.PubMedCrossRefGoogle Scholar
  134. 134.
    Ames, A., and Parks, J. M., 1976, J. Neurochem. 27:1017–1025.PubMedCrossRefGoogle Scholar
  135. 135.
    Cohen, A. I., McDaniel, M., and Orr, H., 1973, Invest. Opthalmol. 12:686–693.Google Scholar
  136. 136.
    Ehinger, B., 1972, Brain Res. 46:297–311.PubMedCrossRefGoogle Scholar
  137. 137.
    Lam, D. M. K., Su, Y. Y. T., Chin, C. A., Brandon, C., Wu, J.-Y., Marc, R. E., and Lasater, E. M., 1980, Brain Res. Bull. 5(Suppl. 2):137–140.CrossRefGoogle Scholar
  138. 138.
    Pasantes-Morales, H., Salceda, R., and Lopez-Colomé, A. M., 1980, J. Neurochem. 35:172–177.CrossRefGoogle Scholar
  139. 139.
    Santamaria, L., Drujan, B. D., Svaetichin, G., and Negishi, K., 1971, Vision Res. 11:877–887.PubMedCrossRefGoogle Scholar
  140. 140.
    Svaetichin, G., Negishi, K., Fatehchand, R., Drujan, B. D., and Selvin de Testa, A., 1965, Prog. Brain Res. 15:243–266.PubMedCrossRefGoogle Scholar
  141. 141.
    Starr, M. S., 1974, J. Neurochem. 23:337–344.PubMedCrossRefGoogle Scholar
  142. 142.
    van Gelder, N. M., and Drujan, B. D., 1978, Brain Res. 159:137–148.PubMedCrossRefGoogle Scholar
  143. 143.
    Voaden, M. J., Lake, N., Marshal, J., and Morjaria, B., 1978, J. Neurochem. 31:1069–1076.PubMedCrossRefGoogle Scholar
  144. 144.
    Baetge, E. E., Bulloch, K., and Stallcup, W. B., 1979, Brain Res. 167:210–214.PubMedCrossRefGoogle Scholar
  145. 145.
    Banker, G. A., 1980, Science 209:809–810.PubMedCrossRefGoogle Scholar
  146. 146.
    Henn, F. A., 1976, J. Neurosci. Res. 2:271–282.PubMedCrossRefGoogle Scholar
  147. 147.
    Barker, J. L., and Ransom, B. R., 1978, J. Physiol. (Lond.) 280:331–354.Google Scholar
  148. 148.
    Hertz, L., and Schousboe, A., 1980, Brain Res. Bull. 5(Suppl. 2):389–395.CrossRefGoogle Scholar
  149. 149.
    Hösli, E., and Hösli L., 1978, Neuroscience 5:145–152.CrossRefGoogle Scholar
  150. 150.
    Kvamme, E., and Olson, B. E., 1979, FEBS Lett. 107:33–36.PubMedCrossRefGoogle Scholar
  151. 151.
    Nicklas, W. J., and Browning, E. T., 1978, J. Neurochem. 30:955–963.PubMedCrossRefGoogle Scholar
  152. 152.
    Schon, F., and Kelly, J. S., 1974, Brain Res. 66:275–288.CrossRefGoogle Scholar
  153. 153.
    Seilström, A., Sjöberg, L.-B., and Hamberger, A., 1975, J. Neurochem. 25:393–398.CrossRefGoogle Scholar
  154. 154.
    Bubenik, G. A., Brown, G. M., and Grota, L. J., 1976, J. Histochem. Cytochem. 24:1173–1177.PubMedCrossRefGoogle Scholar
  155. 155.
    Castejon, O. J., and Castejon, H. V., 1972, Acta Histochem. (Jena) 43:153–163.Google Scholar
  156. 156.
    Descarries, L., and Droz, B., 1970, J. Cell Biol. 44:385–399.PubMedCrossRefGoogle Scholar
  157. 157.
    Fonnum, F., 1970, J. Neurochem. 17:1029–1037.PubMedCrossRefGoogle Scholar
  158. 158.
    Gutnick, M. J., and Prince, D. A., 1981, Science 211:67–70.PubMedCrossRefGoogle Scholar
  159. 159.
    Hösli, E., and Hösli, L., 1976, Exp. Brain Res. 26:319–324.PubMedCrossRefGoogle Scholar
  160. 160.
    Majcen, Z., and Brzin, M., 1971, Histochemie 25:217–224.PubMedCrossRefGoogle Scholar
  161. 161.
    Negishi, K., Hayashi, T., Nakamura, T., and Drujan, B. D., 1979, Neurochem. Res. 4:473–482.PubMedCrossRefGoogle Scholar
  162. 162.
    Privat, A., 1976, J. Microsc. Biol. Cell 27:253–256.Google Scholar
  163. 163.
    Rojik, I., and Fehér, O., 1980, Exp. Brain Res. 39:321–326.PubMedCrossRefGoogle Scholar
  164. 164.
    Schally, A. V., 1978, Science 202:18–28.PubMedCrossRefGoogle Scholar
  165. 165.
    Stretton, A. O. W., and Kravitz, E. A., 1968, Science 162:132–134.PubMedCrossRefGoogle Scholar
  166. 166.
    Storm-Mathisen, J., and Iversen, L. L., 1979, Neuroscience 4:1237–1253.PubMedCrossRefGoogle Scholar
  167. 167.
    Stuart, A. E., Hudspeth, A. J., and Hall, Z. W., 1974, Cell Tissue Res. 153:55–61.PubMedCrossRefGoogle Scholar
  168. 168.
    van Gelder, N. M., 1965, J. Neurochem. 12:231–237.CrossRefGoogle Scholar
  169. 169.
    van Gelder, N. M., and Drujan, B. D., 1980, Brain Res. 200:443–455.PubMedCrossRefGoogle Scholar
  170. 170.
    Wu, J.-Y., 1976, GABA in Nervous System Function (E. Roberts, T. N. Chase, and D. B. Tower, eds.), Raven Press, New York, pp. 7–55.Google Scholar
  171. 171.
    Yalow, R. S., 1978, Science 200:1236–1245.PubMedCrossRefGoogle Scholar
  172. 172.
    Young, J. A. C., Brown, D. A., Kelly, J. S., and Schow, F., 1973, Brain Res. 63:479–486.PubMedCrossRefGoogle Scholar
  173. 173.
    Berl, S., 1965, J. Biol. Chem. 240:2047–2054.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • N. M. van Gelder
    • 1
  1. 1.Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de MédicineUniversité de MontréalMontrealCanada

Personalised recommendations