The Identification of Subcellular Fractions of the Central Nervous System

  • Suella W. Henn
  • Fritz A. Henn


The understanding of cellular function should ultimately come from a comprehension of molecular events and their mode of integration into a working cell. A principle step in that integration takes place through the structuring of biochemical reactions at the subcellular level. This structure involves the components common to all cells, such as the nucleus, endoplasmic reticulum, mitochondria, lysosomes, and plasma membranes as well as such specialized features as the synaptic endings found on meurons in the CNS. A valid way of trying to understand the workings of a cell involves studying an isolated organelle. This requires the development of methods of purification and criteria for determining the degree of purity. This chapter is concerned with the assessment of advantages and limitations of subcellular purification techniques and the identification and evaluation of the resultant fractions.


Subcellular Fraction Glutamic Acid Decarboxylase Neuronal Nucleus Membrane Fragment Synaptic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray, E. G., and Whittaker, V. P., 1962, J. Anat. 96:79–87.PubMedGoogle Scholar
  2. 2.
    DeRobertis, E., Pellegrino de Iraldi, A., Rodriquez de Lores Arnaiz, G., and Salganicoff, L., 1962, J. Neurochem. 9:23–35.CrossRefGoogle Scholar
  3. 3.
    Abdel-Latif, A. A., 1966, Biochim. Biophys. Acta 121:403–406.PubMedCrossRefGoogle Scholar
  4. 4.
    Autilio, L. A., Appel, S. H., Pettis, P., and Gambetti, P. L., 1968, Biochemistry 7:2615–2622.PubMedCrossRefGoogle Scholar
  5. 5.
    Morgan, I. G., Wolfe, L. S., Mandel, P., and Gombos, G., 1971, Biochim. Biophys. Acta 241:737–751.PubMedCrossRefGoogle Scholar
  6. 6.
    Cotman, C. W., 1974, Methods Enzymol. 31:445–452.PubMedCrossRefGoogle Scholar
  7. 7.
    Oestreicher, A. B., and van Leeuwen, C., 1975, J. Neurochem. 24:251–259.PubMedCrossRefGoogle Scholar
  8. 8.
    Joo, F., and Karnushina, I., 1975, J. Neurochem. 24:839–840.PubMedCrossRefGoogle Scholar
  9. 9.
    Hajós, F., 1975, Brain Res. 93:485–489.PubMedCrossRefGoogle Scholar
  10. 10.
    Henn, F. A., Anderson, D. J., and Rustad, D. G., 1976, Brain Res. 101:341–344.PubMedCrossRefGoogle Scholar
  11. 11.
    Booth, R. F. G., and Clark, J. B., 1978, Biochem. J. 176:365–370.PubMedGoogle Scholar
  12. 12.
    Leskawa, K. C., Yohe, H. C., Matsumoto, M., and Rosenberg, A., 1979, Neurochem. Res. 4:483–504.PubMedCrossRefGoogle Scholar
  13. 13.
    Mena, E. E., Hoeser, C. A., and Moore, B. W., 1980, Brain Res. 188:207–231.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotman, C. W., and Matthews, D. A., 1971, Biochim. Biophys. Acta 249:380–394.PubMedCrossRefGoogle Scholar
  15. 15.
    Babitch, J. A., 1973, Brain Res. 49:135–150.PubMedCrossRefGoogle Scholar
  16. 16.
    Bretz, U., Baggiolini, M., Hauser, R., and C., Hodel, 1974, J. Cell Biol. 61:466–480.PubMedCrossRefGoogle Scholar
  17. 17.
    Ross, L. K., Andreoli, V. M., and Marchbanks, R. M., 1971, Brain Res. 25:103–119.PubMedCrossRefGoogle Scholar
  18. 18.
    Whittaker, V. P., 1968, Biochem. J. 106:412–417.PubMedGoogle Scholar
  19. 19.
    Whittaker, V. P., Michaelson, J. A., and Kirkland, R. J. A., 1964, Biochem. J. 90:293–303.PubMedGoogle Scholar
  20. 20.
    Whittaker, V. P. and Barker, L. A., 1972, Methods of Neurochemistry, Volume 2 (R. Fried, ed.), Marcel Dekker, New York, pp. 1–52.Google Scholar
  21. 21.
    Roberts, E., 1978, Interactions between Putative Neurotransmitters in the Brain, (S. Garattini, J. F. Pujol, and R. Samanin, eds.), Raven Press, New York, pp. 89–107.Google Scholar
  22. 22.
    Whittaker, V. P., 1976, Prog. Brain Res. 45:45–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Balazs, R., Hajos, F., Johnson, A. L., Riejneirse, G. L. A., Tapia, R., and Wilkin, G. P., 1975, Brain Res. 86:17–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson V. J., 1966, J. Physiol. (Lond.) 186:139–165.Google Scholar
  25. 25.
    McCance, I., and Phillis, J. W., 1968, Int. J. Neuropharmacol. 7:447–462.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilkin, G. P., Reijneirse, G. L. A., Johnson, A. L., and Balazs, R., 1979, Brain Res. 164:153–163.PubMedCrossRefGoogle Scholar
  27. 27.
    Henn, F. A., Anderson, D. J., and Sellstrom, A., 1977, Nature 266:637–638.PubMedCrossRefGoogle Scholar
  28. 28.
    Memo, M., Riccardi, F., Trabucchi, M., and Spano, P., 1981, Adv. Biochem. Psychopharmacol. 26:41–51.PubMedGoogle Scholar
  29. 29.
    Gilman, A. G., and Nirenberg, M., 1971, Proc. Natl. Acad. Sci. U.S.A. 68:2165–2168.PubMedCrossRefGoogle Scholar
  30. 30.
    London, E. D., and Coyle, J. T., 1979, Eur. J. Pharmacol. 56:287–290.PubMedCrossRefGoogle Scholar
  31. 31.
    Foster, A. C., Mena, E. E., Monaghan, D. T., and Cotman, C. W., 1981, Nature 289:73–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D., 1978, Brain Res. 148:251–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Kronick, P. L., Campbell, G. LeM., and Joseph, K., 1978, Science 200:1074–1076.PubMedCrossRefGoogle Scholar
  34. 34.
    Bock, E., 1978, J. Neurochem. 30:7–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Jorgensen, O. S., and Bock, E., 1974, J. Neurochem. 23:879–880.PubMedCrossRefGoogle Scholar
  36. 36.
    Bock, E., Jorgensen, O., Dittmann, L., and Eng, L., 1975, J. Neurochem. 25:867–870.PubMedCrossRefGoogle Scholar
  37. 37.
    Bock, E., Jorgensen, O. S., and Morris, S. J., 1974, J. Neurochem. 22:1013–1017.PubMedCrossRefGoogle Scholar
  38. 38.
    Rutishauser, U., Gall, W. E., and Edelman, G. M., 1978, J. Cell Biol. 79:382–393.PubMedCrossRefGoogle Scholar
  39. 39.
    Cohen, J., and Selvendran, S. Y., 1981, Nature 291:421–423.PubMedCrossRefGoogle Scholar
  40. 40.
    Levitan, I. B., Mushynski, W. E., and Ramirez, G., 1972, J. Biol. Chem. 247:5376–5381.PubMedGoogle Scholar
  41. 41.
    Gurd, J. W., Jones, L. R., Mahler, H. R., and Moore, W. J., 1974, J. Neurochem. 22:281–290.PubMedCrossRefGoogle Scholar
  42. 42.
    Babitch, J. A., Breithaupt, T. B., Chiu, T.-C., Garadi, R., and Helseth, D. L., 1976, Biochim. Biophys. Acta 433:75–89.PubMedCrossRefGoogle Scholar
  43. 43.
    Hosie, R. J. A., 1965, Biochem. J. 96:404–412.PubMedGoogle Scholar
  44. 44.
    Jones, D. H., and Matus, A. I., 1974, Biochim. Biophys. Acta 356:276–287.PubMedCrossRefGoogle Scholar
  45. 45.
    Henn, F. A., Haljamae, H., and Hamberger, A., 1972, Brain Res. 43:437–443.PubMedCrossRefGoogle Scholar
  46. 46.
    Henn, F. A., and Hamberger, A., 1976, Neurochem. Res. 1:261–273.CrossRefGoogle Scholar
  47. 47.
    Shute, C. C. D., and Lewis, P. R., 1966, Z. Zeilforsch. 69:334–343.CrossRefGoogle Scholar
  48. 48.
    Novikoff, A. B., 1967, The Neuron (H. Hydén, ed.), Elsevier, Amsterdam, pp. 255–318.Google Scholar
  49. 49.
    Kokko, A., Mautner, H. G., and Barnett, R. J., 1969, J. Histochem. Cytochem. 17:625–640.PubMedCrossRefGoogle Scholar
  50. 50.
    Levin, S. J., and Bodansky, O., 1966, J. Biol. Chem. 241:51–56.PubMedGoogle Scholar
  51. 51.
    Torack, R. M., and Barrnett, R. J., 1964, J. Neuropathol. Exp. Neurol. 23:46–59.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller, E. K., and Dawson, R. M., 1972, Biochem. J. 126:805–821.PubMedGoogle Scholar
  53. 53.
    Yen, S. H., Liem, R. K. H., Kelly, P. T., Cotman, C. W., and Shelanski, M. L., 1977, Brain Res. 132:172–175.PubMedCrossRefGoogle Scholar
  54. 54.
    Feit, H., Kelly, P., and Cotman, C. W., 1977, Proc. Natl. Acad. Sci. U.S.A. 74:1047–1051.PubMedCrossRefGoogle Scholar
  55. 55.
    Walters, B. B., and Matus, A. I., 1974, J. Anat. 119:415.Google Scholar
  56. 56.
    Walters, B. B., and Matus, A. I., 1975, Biochem. Soc. Trans. 3:109–112.PubMedGoogle Scholar
  57. 57.
    Banker, G., Churchill, L., and Cotman, C. W., 1974, J. Cell Biol. 63:456–465.PubMedCrossRefGoogle Scholar
  58. 58.
    Cotman, C. W., Banker, G., Churchill, L., and Taylor, D., 1974, J. Cell Biol. 63:441–455.PubMedCrossRefGoogle Scholar
  59. 59.
    Matus, A. I., Walters, B. B., and Mughal, S., 1975, J. Neurocytol. 4:733–744.PubMedCrossRefGoogle Scholar
  60. 60.
    Westrum, L. E., and Gray, E. G., 1976, Brain Res. 105:547–556.PubMedCrossRefGoogle Scholar
  61. 61.
    Siakotos, A. N., 1974, Methods Enzymol. 31:452–457.PubMedCrossRefGoogle Scholar
  62. 62.
    Wray, W., Conn, P. M., and Wray, V. P., 1977, Methods Cell Biol. 16:69–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Fujitani, H., and Holoubek, V., 1974, J. Neurochem. 23:1215–1224.PubMedCrossRefGoogle Scholar
  64. 64.
    McEwen, B. S., Plapinger, L., Wallach, G., and Magnus, C., 1972, J. Neurochem. 19:1159–1170.PubMedCrossRefGoogle Scholar
  65. 65.
    Austoker, J., Cox, D., and Mathias, A. P., 1972, Biochem. J. 129:1139–1155.PubMedGoogle Scholar
  66. 66.
    Rappoport, D. A., Maxcy, P., Jr., and Daginawala, H. F., 1969, Handbook of Neurochemistry, Volume 2 (A. Lajtha, ed.), Plenum Press, New York, pp. 241–254.Google Scholar
  67. 67.
    Tsitilou, S. G., Cox, D., Mathias, A. P., and Ridge, D., 1979, Biochem. J. 177:331–346.PubMedGoogle Scholar
  68. 68.
    Stambolova, M. A., Cox, D., and Mathias, A. P., 1973, Biochem. J. 136:685–695.PubMedGoogle Scholar
  69. 69.
    Tashiro, T., Mizobe, F., and Kurokawa, M., 1974, FEBS Lett. 38:121–124.CrossRefGoogle Scholar
  70. 70.
    Hamberger, A., Blomstrand, C., and Lehninger, A. L., 1970, J. Cell Biol. 45:221–234.PubMedCrossRefGoogle Scholar
  71. 71.
    Van den Berg, C. J., 1973, Metabolic Compartmentation in the Brain (R. Balazs and J. E. Cremer, eds.), Macmillan, London, pp. 137–166.Google Scholar
  72. 72.
    Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B., 1975, Metabolic Compartmentation and Neurotransmission, (S. Berl, D. D. Clarke, and D. Schneider, eds.), Plenum Press, New York, pp. 487–496.CrossRefGoogle Scholar
  73. 73.
    Lai, J. C. K., and Clark, J. B., 1976, Biochem. J. 154:423–432.PubMedGoogle Scholar
  74. 74.
    Sottocasa, G. L., Kuylenstierna, B., Ernster, L., and Bergstrand, A., 1967, Methods Enzymol 10:448–463.CrossRefGoogle Scholar
  75. 75.
    Schnaitman, C., Erwin, V. G., and Greenawalt, J. W., 1967, J. Cell Biol. 32:719–735.PubMedCrossRefGoogle Scholar
  76. 76.
    Sottocasa, G. L., Kuylenstierna, B., Ernster, L., and Bergstrand, A., 1967, J. Cell Biol. 32:415–438.PubMedCrossRefGoogle Scholar
  77. 77.
    Youdim, M. B. H., 1976, J. Neural Transm. 38:15–29.CrossRefGoogle Scholar
  78. 78.
    Achee, F. M., Togulga, G., and Gabay, S., 1974, J. Neurochem. 22:651–661.PubMedCrossRefGoogle Scholar
  79. 79.
    Reid, E., and Williamson, R., 1974, Methods Enzymol. 31:713–733.PubMedCrossRefGoogle Scholar
  80. 80.
    Nordlie, R. C., and Arion, W. J., 1966, Methods Enzymol. 9:619–625.CrossRefGoogle Scholar
  81. 81.
    Crane, F. L., 1957, Plant Physiol. 32:619–625.PubMedCrossRefGoogle Scholar
  82. 82.
    De Marchena, O., Herndon, R. M., and Guarnieri, M., 1974, Brain Res. 80:497–502.PubMedCrossRefGoogle Scholar
  83. 83.
    Kamath, S. A., and Narayan, K. A., 1972, Anal. Biochem. 48:53–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Kamath, S. A., and Rubin, E., 1972, Biochem. Biophys. Res. Commun. 49:52–59.PubMedCrossRefGoogle Scholar
  85. 85.
    Siegrist, H. P., Burkart, T., Wiesmann, U. N., Herschkowitz, N. N., and Spycher, M. A., 1979, J. Neurochem. 33:497–504.PubMedCrossRefGoogle Scholar
  86. 86.
    Jorgensen, A. O., and Heywood, S. M., 1974, Proc. Natl. Acad. Sci. U.S.A. 71:4278–4282.PubMedCrossRefGoogle Scholar
  87. 87.
    Salganicoff, L., and De Robertis, E., 1965, J. Neurochem. 12:287–309.PubMedCrossRefGoogle Scholar
  88. 88.
    Sellinger, O. Z., and de Balbian Verster, F., 1962, J. Biol. Chem. 237:2836–2844.PubMedGoogle Scholar
  89. 89.
    Sellinger, O. Z., de Balbian Verster, F., Sullivan, R. J., and Lamar, C., Jr., 1966, J. Neurochem. 13:501–513.PubMedCrossRefGoogle Scholar
  90. 90.
    Norenberg, M. D., and Martinez-Hernandez, A., 1979, Brain Res. 161:303–310.PubMedCrossRefGoogle Scholar
  91. 91.
    Koenig, H., 1974, Methods Enzymol. 31:457–477.PubMedCrossRefGoogle Scholar
  92. 92.
    Overdijk, B., Hooghwinkel, G. J. M., and Lisman, J. J. W., 1978, Enzymes of Lipid Metabolism (S. Gatt, L. Freysz, and P. Mandel, eds.), Plenum Press, New York, pp. 601–610.CrossRefGoogle Scholar
  93. 93.
    Lisman, J. J. W., De Haan, J., and Overdijk, B., 1979, Biochem. J. 178:79–87.PubMedGoogle Scholar
  94. 94.
    Koenig, H. 1969, Handbook of Neurochemistry, Volume 2 (A. Lajtha, ed.), Plenum Press, New York, pp. 255–301.Google Scholar
  95. 95.
    De Pierre, J. W., and Karnovsky, M. L., 1973, J. Cell Biol. 56:275–303.CrossRefGoogle Scholar
  96. 96.
    Henn, F. A., 1980, Advances in Cellular Neurobiology, Volume I (S. Fedoroff and L. Hertz, eds.), Academic Press, New York, ppa. 373–403.Google Scholar
  97. 97.
    Glick, M. C., Kimhi, Y., and Littauer, U. Z., 1973, Proc. Natl. Acad. Sci. U.S.A. 70:1370–1372.CrossRefGoogle Scholar
  98. 98.
    Hemminki, K., 1975, Methods Cell Biol. 9:247–257.PubMedCrossRefGoogle Scholar
  99. 99.
    DeVries, G. H., Matthieu, J.-M., Beny, M., Chicheportiche, R., Lazdunski, M., and Dolivo, M., 1978, Brain Res. 147:339–352.PubMedCrossRefGoogle Scholar
  100. 100.
    Fonnum, F., 1969, Biochem. J. 115:465–472.PubMedGoogle Scholar
  101. 101.
    Cotman, C. W., Herschman, H., and Taylor, D., 1971, J. Neurobiol. 2:169–180.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Suella W. Henn
    • 1
  • Fritz A. Henn
    • 1
  1. 1.Department of Psychiatry, College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations