Rapid Enzyme Inactivation

  • Robert H. Lenox
  • G. Jean Kant
  • James L. Meyerhoff


The brain functions at a high metabolic level and is dependent on the maintenance of energy stores that require constant access to oxygen and glucose via cerebral blood flow. The enzyme activities of individual metabolic pathways and relative concentrations of intermediary metabolites can be significantly altered by changes in regional blood flow in the brain. In order to determine endogenous metabolite levels, cessation of metabolic events should ideally occur in situ instantaneously, since any finite amount of time provides relative periods of ischemia during which artifactual changes in metabolite concentrations can occur. Efforts to measure in vivo levels of intermediary metabolites, high-energy phosphates, cyclic nucleotides, and amino acids in brain tissue require rapid enzyme inactivation to stop metabolism.


Microwave Irradiation Microwave Heating Cyclic Nucleotide Microwave Field Enzyme Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr, S. E., 1935, J. Biol. Chem. 110:625–635.Google Scholar
  2. 2.
    Stone, W. E., 1938, Biochem. J. 32:1908–1918.PubMedGoogle Scholar
  3. 3.
    Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schultz, D., 1964, J. Biol. Chem. 239:18–30.PubMedGoogle Scholar
  4. 4.
    Jongkind, J. F., and Bruntink, R., 1970, J. Neurochem. 17:1615–1617.PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrendelli, J. A., Gay, M. H., Sedgwick, W. G., and Chang, M. M., 1972, J. Neurochem. 19:979–987.PubMedCrossRefGoogle Scholar
  6. 6.
    Swaab, D. F., 1971, J. Neurochem. 18:2085–2092.PubMedCrossRefGoogle Scholar
  7. 7.
    Lust, W. D., Passonneau, J. V., and Veech, R. L., 1973, Science 181:280–282.PubMedCrossRefGoogle Scholar
  8. 8.
    Lust, W. D., Murakami, N., de Azerdo, F., and Passonneau, J. V., 1980, Cerebral Metabolism and Neural Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), Williams & Wilkins, Baltimore, pp 10–19.Google Scholar
  9. 9.
    Ehrlich, Y. H., Davis, L. G., and Brunngraber, E. G., 1978, Brain Res. Bull. 3:251–256.PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi, R., and Aprison, M. H., 1964, J. Neurochem. 11:887–898.PubMedCrossRefGoogle Scholar
  11. 11.
    Aprison, M.H., Kariya, T., Hingtgen, J.N., and Toru, M., 1968, J. Neurochem. 15:1131–1139.PubMedCrossRefGoogle Scholar
  12. 12.
    Richter, D., and Dawson, R. M. C., 1948, Am. J. Physiol. 154:73–79.PubMedGoogle Scholar
  13. 13.
    Ponten, U., Ratcheson, R. A., Salford, L. G., and Siesjo, B. K., 1973, J. Neurochem. 21:1127–1138.PubMedCrossRefGoogle Scholar
  14. 14.
    Welsh, F. A., and Rieder, W., 1978, J. Neurochem. 31:299–309.PubMedCrossRefGoogle Scholar
  15. 15.
    Kant, G. J., Muller, T., Lenox, R. H., and Meyerhoff, J. L., 1980, Biochem. Pharmacol. 39:1891–1896.CrossRefGoogle Scholar
  16. 16.
    Skinner, J. E., Welch, K. M. A., Reed, J. C., and Nell, J. H., 1978, J. Neurochem. 30:691–698.PubMedCrossRefGoogle Scholar
  17. 17.
    Veech, R. L., Harris, R. L., Veloso, D., and Veech, E. H., 1973, J. Neurochem. 20:183–188.PubMedCrossRefGoogle Scholar
  18. 18.
    Quistorff, B., 1975, Anal. Biochem. 68:102–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Quistorff, B., 1980, Cerebral Metabolism and Neural Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), Williams & Wilkins, Baltimore, pp. 42–52.Google Scholar
  20. 20.
    McCandless, D. W., and Rosberg, N. C., 1980, Cerebral Metabolism and Neural Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), Williams & Wilkins, Baltimore, pp. 53–55.Google Scholar
  21. 21.
    Stavinoha, W. B., Pepelko, B., and Smith, B., 1970, Pharmacologist 12:257.Google Scholar
  22. 22.
    Lenox, R. H., Brown, P. V., and Meyerhoff, J. L., 1979, Trends Neurosci. 2:106–109.CrossRefGoogle Scholar
  23. 23.
    Meyerhoff, J. L., Gandhi, O. P., Jacobi, J. H., and Lenox, R. H., 1979, IEEE Trans. Microwave Theor. Technol. 27:267–270.CrossRefGoogle Scholar
  24. 24.
    Medina, M. A., Deam, A. P., and Stavinoha, W. B., 1980, Cerebral Metabolism and Neural Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), Williams & Wilkins, Baltimore, pp. 56–69.Google Scholar
  25. 25.
    Miller, A. L., and Shamban, A., 1977, J. Neurochem. 28:1327–1334.PubMedCrossRefGoogle Scholar
  26. 26.
    Guidotti, A., Cheney, D. L., Trabucchi, M., Doteuchi, M., and Wang, C., 1974, Neuropharmacology 13:1115–1122.PubMedCrossRefGoogle Scholar
  27. 27.
    Medina, M. A., Jones, D. J., Stavinoha, W. B., and Ross, D. H., 1975, J. Neurochem. 24:223–227.PubMedCrossRefGoogle Scholar
  28. 28.
    Medina, M. A., and Stavinoha, W. B., 1977, Brain Res. 132:149–152.PubMedCrossRefGoogle Scholar
  29. 29.
    Passonneau, J. V., Lust, W. D., and McCandless, D. W., 1979, Techniques Life Sci. [B] 212:1–27.Google Scholar
  30. 30.
    Steiner, A. L., Ferrendelli, J. A., and Kipnis, D. M., 1972, J. Biol. Chem. 247:1121–1124.PubMedGoogle Scholar
  31. 31.
    Schmidt, M. S., Schmidt, D. E., and Robison, G. A., 1971, Science 173:1142–1143.PubMedCrossRefGoogle Scholar
  32. 32.
    Jones, D. J., and Stavinoha, W. B., 1979, Neuropharmacology of Cyclic Nucleotides (G. Palmer, ed.), Urban and Schwarzenberg, Munich, pp. 253–281.Google Scholar
  33. 33.
    Uzunov, P., and Weiss, B., 1971, Neuropharmacology 10:697–708.PubMedCrossRefGoogle Scholar
  34. 34.
    Lenox, R. H., Kant, G. J., Sessions, G. R., Pennington, L. L., Mougey, E. H., and Meyerhoff, J. L., 1980, Neuroendocrinology 30:300–308.PubMedCrossRefGoogle Scholar
  35. 35.
    Lenox, R. H., Kant, G. J., and Meyerhoff, J. L., 1980, Life Sci 26:2201–2209.PubMedCrossRefGoogle Scholar
  36. 36.
    Meyerhoff, J. L., Kant, G. J., and Lenox, R. H., 1981, Perspectives in Behavioral Medicine, Volume II (R. B. Williams, ed.), Academic Press, New York (in press).Google Scholar
  37. 37.
    Lenox, R. H., Wray, H. L., Balcom, G. J., Hawkins, T. D., and Meyerhoff, J. L., 1979, Eur. J. Pharmacol. 55:159–169.PubMedCrossRefGoogle Scholar
  38. 38.
    Kant, G. J., Meyerhoff, J. L., and Lenox, R. H., 1980, Biochem. Pharmacol. 29:369–373.PubMedCrossRefGoogle Scholar
  39. 39.
    Meyerhoff, J. L., Lenox, R. H., Kant, G. J., Sessions, G. R., Mougey, E. H., and Pennington, L. L., 1979, Life Sci. 24:1125–1130.PubMedCrossRefGoogle Scholar
  40. 40.
    Weintraub, S. T., Modak, A. T., and Stavinoha, W. B., 1976, Brain Res. 105:179–183.PubMedCrossRefGoogle Scholar
  41. 41.
    Nordberg, A., and Sundwall, A., 1976, Acta Physiol. Scand. 98:307–317.PubMedCrossRefGoogle Scholar
  42. 42.
    Modak, A. T., Weintraub, S. T., McCoy, T. H., and Stavinoha, W. B., 1976, J. Pharmacol. Exp. Ther. 197:245–252.PubMedGoogle Scholar
  43. 43.
    Stavinoha, W. B., Weintraub, S. T., and Modak, A. T., 1973, J. Neurochem. 20:361–371.PubMedCrossRefGoogle Scholar
  44. 44.
    Lovell, R. A., and Elliott, K. A. C., 1963, J. Neurochem. 10:479–488.PubMedCrossRefGoogle Scholar
  45. 45.
    Shank, R. P., and Aprison, M. H., 1971, J. Neurobiol. 2:145–151.PubMedCrossRefGoogle Scholar
  46. 46.
    Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L., 1975, J. Neurochem. 24:609–613.PubMedGoogle Scholar
  47. 47.
    Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L., 1976, J. Neurochem. 26:423–425.PubMedCrossRefGoogle Scholar
  48. 48.
    Waniewski, R. A., and Suria, A., 1977, Life Sci. 21:1129–1142.PubMedCrossRefGoogle Scholar
  49. 49.
    Knieriem, K. M., Medina, M. A., and Stavinoha, W. B., 1977, J. Neurochem. 28:885–886.PubMedCrossRefGoogle Scholar
  50. 50.
    Albers, R. W., and Brady, R. O., 1959, J. Biol. Chem. 234:926–928.PubMedGoogle Scholar
  51. 51.
    Tappaz, M. L., Brownstein, M. J., and Kopin, I. J., 1977, Brain Res. 125:109–121.PubMedCrossRefGoogle Scholar
  52. 52.
    Meyerhoff, J. L., Lenox, R. H., and Brown, N. D., 1977, Neurosci. Abstr. 2:607.Google Scholar
  53. 53.
    Weintraub, S. T., Stavinoha, W. B., Pike, R. L., Morgan, W. W., Modak, A. T., Koslow, S. H., and Blank, L., 1976, Life Sci. 17:1423–1428.CrossRefGoogle Scholar
  54. 54.
    Meyerhoff, J. L., Kant, G. J., and Lenox, R. H., 1978, Brain Res. 152:161–169.PubMedCrossRefGoogle Scholar
  55. 55.
    Kant, G. J., Lenox, R. H., and Meyerhoff, J. L., 1979, Neurochem. Res. 4:529–534.PubMedCrossRefGoogle Scholar
  56. 56.
    Sharpless, N. S., and Brown, L. L., 1978, Brain Res. 140:171–176.PubMedCrossRefGoogle Scholar
  57. 57.
    Blank, C. L., Sasa, S., Isernhagen, R., Meyerson, L. R., Wassil, D., Wong, P., Modak, A. T., and Stavinoha, W. B., 1979, J. Neurochem. 33:213–219.PubMedCrossRefGoogle Scholar
  58. 58.
    Hough, L. B., and Domino, E. F., 1977, J. Neurochem. 29:199–204.PubMedCrossRefGoogle Scholar
  59. 59.
    Cheung, A. L., Stavinoha, W. B., and Goldstein, A., 1977, Life Sci 20:1285–1290.PubMedCrossRefGoogle Scholar
  60. 60.
    Kanazawa, I., and Jessell, T., 1976, Brain Res. 117:362–367.PubMedCrossRefGoogle Scholar
  61. 61.
    Stavinoha, W. B., Frazer, J., and Modak, A. T., 1978, Cholinergic Mechanisms and Psychopharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 169–179.CrossRefGoogle Scholar
  62. 62.
    Butcher, L. L., and Butcher, S. H., 1976, Life Sci. 19:1079–1088.PubMedCrossRefGoogle Scholar
  63. 63.
    Lenox, R. H., Meyerhoff, J. L., Gandhi, O. P., and Wray, H. L., 1977, J. Cyclic Nucleotide Res. 3:367–379.PubMedGoogle Scholar
  64. 64.
    Dawson, D. M., Eppenberger, H. M., and Kaplan, N. U., 1967, J. Biol. Chem. 242:210–217.PubMedGoogle Scholar
  65. 65.
    Andreoli, T. E., Lam, K. W., and Sanadi, D. R., 1965, J. Biol. Chem. 240:2644–2653.PubMedGoogle Scholar
  66. 66.
    Nelson, S. R., 1973, Radiat. Res. 55:152.CrossRefGoogle Scholar
  67. 67.
    Jones, D. J., Medina, M. A., Ross, D. H., and Stavinoha, W. B., 1974, Life Sci. 14:1577–1585.PubMedCrossRefGoogle Scholar
  68. 68.
    Schmidt, D. E., 1976, Neuropharmacology 15:77–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Corda, M. P., Biggio, G., and Gessa, G. L., 1980, Brain Res. 188:287–290.PubMedCrossRefGoogle Scholar
  70. 70.
    Lenox, R. H., Gandhi, O. P., Meyerhoff, J. L., and Grove, H. M., 1976, IEEE Trans. Microwave Theor. Tech. 24:58–64.CrossRefGoogle Scholar
  71. 71.
    Brown, P. V., Lenox, R. H., and Meyerhoff, J. L., 1978, IEEE Trans. Biomed. Eng. 25:205–208.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang, J. J. H., 1978, U.S. Army Research Office, Final Technical Report, Project A-1943, Grant DAMD17–77-G-9422, Georgia Institute of Technology, Atlanta, Ga.Google Scholar
  73. 73.
    Raichle, M. E., Welch, M. J., Grubb, R. L., Jr., Higgins, C. S., Ter-Pogossian, M. M., and Larson, K. B., 1978, Science 199:986–987.PubMedCrossRefGoogle Scholar
  74. 74.
    Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, J., Cosella, N., Fowler, J., Hoffman, E., Alavi, A., Som, P., Sokoloff, L., 1979, Circ. Res. 44:127–137.PubMedCrossRefGoogle Scholar
  75. 75.
    Chance, B., Eleff, S., and Leigh, J. S., Jr., 1980, Proc. Natl. Acad. Sci. U.S.A. 77:7430–7434.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert H. Lenox
    • 1
  • G. Jean Kant
    • 2
  • James L. Meyerhoff
    • 2
  1. 1.Neuroscience Research Unit, Department of PsychiatryUniversity of VermontBurlingtonUSA
  2. 2.Department of Medical NeurosciencesWalter Reed Army Institute of Research, Walter Reed Army Medical CenterUSA

Personalised recommendations