Advertisement

Immobilized Enzymes as Precolumn and Postcolumn Modification Reagents in Liquid Chromatography

  • Larry D. Bowers
  • William D. Bostick
Part of the Modern Analytical Chemistry book series (volume 2)

Abstract

The use of enzymes as reagents for analysis has increased rapidly over the past decade. Briefly, enzymes are high-molecular-weight biochemicals which catalyze the reactions necessary for life itself. Without exception, these biocatalysts are members of a class of compounds called proteins. The distinguishing factor for enzymes is the existence of a geometrical area on their three-dimensional structure which facilitates catalysis. The binding of the reactant, called the substrate, to the active site of the enzyme is the first step in catalysis. It is important to remember that this binding process may require major rearrangement of the enzyme three-dimensional structure, a process called induced fit of substrate. The reaction then proceeds through a variety of mechanisms ranging from increased susceptibility to nucleophilic attack to an intermediate in which a portion of the substrate remains covalently bound to the enzyme molecule, in all cases mediated by the enzyme molecule.

Keywords

Bile Acid Lactate Dehydrogenase Immobilize Enzyme Axial Dispersion Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dixon and D. C. Webb, The Enzymes, 2nd ed., Academic Press, New York (1964).Google Scholar
  2. 2.
    J. M. Nelson and E. G. Griffin, J. Am. Chem. Soc. 38, 1109–1115 (1916).CrossRefGoogle Scholar
  3. 3.
    H. U. Bergmeyer, ed., Principles of Enzymatic Analysis, Verlag Chemie, New York (1978).Google Scholar
  4. 4.
    H. U. Bergmeyer, ed., Methods of Enzymatic Analysis, 2nd ed., Academic Press, New York (1974).Google Scholar
  5. 5.
    O. H. Lowry and J. V. Passonneau, A Flexible System of Enzymatic Analysis, Academic Press, New York (1972).Google Scholar
  6. 6.
    P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry: Fundamentals and Applications, Wiley, New York (1980).Google Scholar
  7. 7.
    G. G. Guilbault, Handbook of Enzymatic Methods of Analysis, Marcel Dekker, New York (1976).Google Scholar
  8. 8.
    R. W. Frei, in Chemical Reaction and Modification Techniques in Analytical Chemistry, Vol. 1, J. F. Lawrence and R. W. Frei, eds., Plenum Press, New York (1980).Google Scholar
  9. 9.
    K. J. Laidler and P. S. Bunting, The Chemical Kinetics of Enzyme Action, 2nd ed., Clarendon Press, Oxford (1973).Google Scholar
  10. 10.
    J. E. Davis and J. Pevnick, Anal. Chem. 51, 529–533 (1979).CrossRefGoogle Scholar
  11. 11.
    K. Mosbach, ed., Methods in Enzymology, Vol. 44, Academic Press, New York (1976).Google Scholar
  12. 12.
    T. M. S. Chang, ed., Biomedical Applications of Immobilized Enzymes and Proteins, Plenum Press, New York (1977).Google Scholar
  13. 13.
    C. Horvath, A. Sardi, and J. S. Woods, J. Appl. Physiol. 34, 181–187 (1973).Google Scholar
  14. 14.
    L. D. Bowers and P. W. Carr, Anal. Chem. 48, 544A - 559A (1976).Google Scholar
  15. R. Zaborsky, Immobilized Enzymes,CRC Press, Cleveland (1973).Google Scholar
  16. 16.
    E. K. Pye and L. B. Wingard, eds., Enzyme Engineering, Vol. II, Plenum Press, New York (1973).Google Scholar
  17. 17.
    H. H. Weetall, Immobilized Enzymes, Antigens, Antibodies, and Peptides, Marcel Dekker, New York (1975).Google Scholar
  18. 18.
    G. R. Stark, Biochemical Aspects of Reactions on Solid Supports, Academic Press, New York (1971).Google Scholar
  19. 19.
    P. V. Sundaram and E. M. Crook, Can. J. Biochem. 49, 1388–1394 (1971).CrossRefGoogle Scholar
  20. 20.
    M. N. Thang, M. Graffe, and M. Granberg-Manago, Biochem. Biophys. Res. Commun. 31, 1–8, (1968).CrossRefGoogle Scholar
  21. 21.
    C. A. Zittle, Adv. Enzymol. Relat. Areas Mol. Biol. 14, 319–374 (1953).Google Scholar
  22. 22.
    R. A. Messing, J. Non-Cryst. Solids 19, 277–280 (1975).CrossRefGoogle Scholar
  23. 23.
    K. D. Caldwell, R. Axen, M. Bergwall, and J. Porath, Biotechnol. Bioeng. 18, 15731588 (1976).Google Scholar
  24. 24.
    W. D. Bascom, Macromolecules 5, 792–799 (1972).CrossRefGoogle Scholar
  25. 25.
    M. Keyes, U.S. Pat. No. 2,933,589 (January 20, 1976 ).Google Scholar
  26. 26.
    G. P. Hicks and S. J. Updike, Anal. Chem. 38, 726–730 (1966).CrossRefGoogle Scholar
  27. 27.
    G. G. Guilbault and J. Das, Anal. Biochem. 33, 341–355 (1970).CrossRefGoogle Scholar
  28. 28.
    W. J. Blaedel, T. R. Kissel, and R. C. Boguslaski, Anal. Chem. 44, 2030–2037 (1972).CrossRefGoogle Scholar
  29. 29.
    H. K. Lau and G. G. Guilbault, Clin. Chem. 19, 1045–1048 (1973).Google Scholar
  30. 30.
    P. Johnson and T. L. Whately, J. Colloid Interface Sci. 37, 557–563 (1973).CrossRefGoogle Scholar
  31. 31.
    F. M. Richards, Ann. Rev. Biochem. 32, 268–300 (1962).Google Scholar
  32. 32. O. R. Zaborsky, Immobilized Enzymes,CRC Press, Cleveland (1973), p. 62.Google Scholar
  33. 33.
    R. H. Zaugg, L. King, and I. M. Klotz, Biochem. Biophys. Res. Commun. 64, 1192 (1975).CrossRefGoogle Scholar
  34. 34.
    T. Kitagawa and T. Aikawa, J. Biochem. 79, 233–236 (1976).Google Scholar
  35. 35.
    P. Guire, D. Fliger, and J. Hodgson, Pharmaco. Res. Commun. 9, 121–126 (1977).Google Scholar
  36. 36. O. R. Zaborsky and J. Ogletree, Biochem. Biophys. Res. Commun.61 210–216 (1974).Google Scholar
  37. 37.
    L. Goldstein, Biochemistry 11, 4072–4084 (1972).CrossRefGoogle Scholar
  38. 38.
    L. Goldstein and E. Katchalski, Z. Anal. Chem. 243, 375–396 (1968).CrossRefGoogle Scholar
  39. 39.
    A. C. Johansson and K. Mosbach, Biochim. Biophys. Acta. 370, 348–353 (1974).CrossRefGoogle Scholar
  40. 40.
    G. J. H. Melrose, Rev. Pure Appl. Chem. 21, 83–119 (1971).Google Scholar
  41. 41.
    H. H. Weetall, Biochem. Biophys. Acta 212, 1–7 (1970).CrossRefGoogle Scholar
  42. 42.
    J. E. Dixon, F. E. Stolzenbach, J. A. Berenson, and N. O. Kaplan, Biochem. Biophys. Res. Commun. 52, 905–912 (1973).CrossRefGoogle Scholar
  43. 43.
    A. Flynn and D. B. Johnson, Biotechnol. Bioeng. 20, 1445–1454 (1978).CrossRefGoogle Scholar
  44. 44.
    N. Kelly, A. Flynn, and D. B. Johnson, Biotechnol. Bioeng. 19, 1211–1213 (1977).CrossRefGoogle Scholar
  45. 45.
    J. M. Engasser and C. Horvath, in Applied Biochemistry and Bioengineering, Vol. 1, L. B. Wingard, E. Katchalski-Kazir, and L. Goldstein, eds., Academic Press, New York (1976), pp. 127–220.Google Scholar
  46. 46.
    D. B. Johnson, Biochem-Soc. Trans. 7, 7–10 (1979).Google Scholar
  47. 47.
    K. Martinek and I. V. Berezin, J. Solid-Phase Biochem. 2, 343–385 (1977).Google Scholar
  48. 48.
    D. Gabel, Eur. J. Biochem. 33, 348–356 (1973).CrossRefGoogle Scholar
  49. 49.
    K. Martinek, A. M. Klibanov, V. S. Goldmacher, and I. V. Berezin, J. Solid-Phase Biochem. 2, 343–385 (1977).Google Scholar
  50. 50.
    K. Martinek, A. M. Klibanov, A. V. Tchernysheva, V. V. Mozhaev, I. V. Berezin, and B. O. Glotov, Biochim. Biophys. Acta 485, 13–28 (1977).CrossRefGoogle Scholar
  51. 51.
    J. E. Dixon, F. E. Stolzenbach, J. A. Berenson, and N. O. Kaplan, Biochem. Biophys. Res. Commun. 52, 905–912 (1973).CrossRefGoogle Scholar
  52. 52.
    L. G. Butler, Enzyme Microb. Technol. 1, 253–259 (1979).Google Scholar
  53. 53.
    S. Takemori, E. Furuya, H. Suzuki, and M. Katagiri, Nature 215, 417–419 (1967).CrossRefGoogle Scholar
  54. 54.
    H. George, J. McMahan, K. Bowler, and M. Elliott, Biochim. Biophys. Acta 191, 466–468 (1969).CrossRefGoogle Scholar
  55. 55.
    K. H. Tan and R. Lovrein, J. Biol. Chem. 247, 3278–3285 (1972).Google Scholar
  56. 56.
    F. Rabel, Am. Lab., 112 (1979).Google Scholar
  57. 57.
    R. S. Deelder, M. G. F. Kroll, A. J. B. Beeren, and J. H. M. van den Berg, J. Chromatogr. 149, 669–682 (1978).Google Scholar
  58. 58.
    C. J. Little, J. A. Whately, and A. D. Dale, J. Chromatogr. 171, 63–69 (1979).CrossRefGoogle Scholar
  59. 59.
    R. S. Schifreen, D. A. Hanna, L. D. Bowers, and P. W. Carr, Anal. Chem. 49, 1929–1939 (1977).CrossRefGoogle Scholar
  60. 60.
    J. C. Sternberg, in Advances in Chromatography, Vol. 2, J. C. Giddings and R. A. Keller, eds., Marcel Dekker, New York (1966), pp. 206–270.Google Scholar
  61. 61.
    S. Adachi, K. Hashimoto, R. Matsuno, K. Nakanishi, and T. Kamikubo, Biotechnol. Bioeng. 22, 779–797 (1980).CrossRefGoogle Scholar
  62. 62.
    J. M. Elvecrog and P. W. Carr, Anal. Chim. Acta 121, 135–141 (1980).CrossRefGoogle Scholar
  63. 63.
    R. E. Adams and P. W. Carr, Anal. Chem. 50, 944–950 (1978).CrossRefGoogle Scholar
  64. 64.
    J. F. Rustling, G. H. Luttrell, L. F. Cullen, and G. J. Papariello, Anal. Chem. 49, 1211–1215 (1976).CrossRefGoogle Scholar
  65. 65.
    L. J. Skeggs, Am. J. Clin. Path. 28, 311–322 (1958).Google Scholar
  66. 66.
    R. Thiers and K. Oglesby, Clin. Chem. 10, 246–257 (1964).Google Scholar
  67. 67.
    R. Thiers, R. Cole, and W. Kirsch, Clin. Chem. 13, 451–467 (1967).Google Scholar
  68. 68.
    W. H. C. Walker, in Continuous Flow Analysis, W. B. Furman, ed., Marcel Dekker, New York (1976).Google Scholar
  69. 69.
    W. H. C. Walker, J. C. Shepherdson, and G. K. McGowan, Clin. Chim. Acta 35, 455–462 (1971).CrossRefGoogle Scholar
  70. 70.
    R. L. Habig, B. W. Schlein, L. Walters, and R. E. Thiers, Clin. Chem. 15, 10451055 (1969).Google Scholar
  71. 71.
    R. E. Thiers, A. H. Reed, and K. Delander, Clin. Chem. 17, 42–48 (1971).Google Scholar
  72. 72.
    W. H. C. Walker and K. Andrew, Clin. Chim. Acta 57, 181–185 (1974).CrossRefGoogle Scholar
  73. 73.
    L. R. Snyder and H. J. Adler, Anal. Chem. 48, 1017–1021 (1976).CrossRefGoogle Scholar
  74. 74.
    L. R. Snyder and H. J. Adler, Anal. Chem. 48, 1022–1027 (1976).CrossRefGoogle Scholar
  75. 75.
    L. R. Snyder, J. Chromatogr. 125, 287–306 (1976).CrossRefGoogle Scholar
  76. 76. L. R. Snyder Anal. Chim. Acta 114 3–18 (1980).Google Scholar
  77. 77.
    W. E. Hornby, H. Filippusson, and A. MacDonald, FEBS Lett. 9, 8–10 (1970).CrossRefGoogle Scholar
  78. 78.
    D. J. Inman and W. E. Hornby, Biochem. J. 129, 255–262 (1972).Google Scholar
  79. 79.
    J. Campbell, W. E. Hornby, and D. L. Morris, Biochim Biophys. Acta 384, 307316 (1975).Google Scholar
  80. 80.
    C. Horvath, B. A. Soloman, and J. M. Engasser, Ind. Eng. Chem. Fund. 12, 431–439 (1973).CrossRefGoogle Scholar
  81. 81.
    C. Horvath and B. A. Soloman, Biotechnol. Bioeng. 14, 885–914 (1972).CrossRefGoogle Scholar
  82. 82.
    L. P. Leon, M. Sansur, L. R. Snyder, and C. Horvath, Clin. Chem. 23, 1556–1562 (1977).Google Scholar
  83. 83.
    P. V. Sundaram and D. K. Apps, Biochem. J. 161. 441–443 (1975).Google Scholar
  84. 84.
    C. Horvath and H. Pedersen, in Continuous-Flow Analysis, 7th Technicon International Congress, Mediad Press, Tarrytown, New York (1976), pp. 86–95.Google Scholar
  85. 85.
    C. Horvath, A. Sardi, and B. A. Soloman, Physiol. Chem. Phys. 4, 125–130 (1972).Google Scholar
  86. 86.
    R. A. Hartwick and P. R. Brown, J. Chromatogr. 126, 679–691 (1976).CrossRefGoogle Scholar
  87. 87.
    A. M. Krstulovic, P. R. Brown, and D. M. Rosie, Anal. Chem. 49, 2237–2241 (1977).CrossRefGoogle Scholar
  88. 88.
    P. R. Brown, J. Chromatogr. 52, 257–272 (1970).CrossRefGoogle Scholar
  89. 89.
    J. Blatt, G. Reaman, and D. G. Poplack, N. Eng. J. Med. 303, 918–922 (1980).CrossRefGoogle Scholar
  90. 90.
    S. Bernstein and S. Soloman, eds., Chemical and Biological Aspects of Steroid Conjugation, Springer, New York (1970).Google Scholar
  91. 91.
    N. Nemoto, T. Hirikawa, and S. Takayama, Chem.-Biol. Interactions 5, 177–188 (1979).Google Scholar
  92. 92.
    R. L. Smith and R. T. Williams, in Glucuronic Acid, Free and Combined, G. J. Dutton, ed., Academic Press, New York (1966), pp. 457–488.Google Scholar
  93. 93.
    Sj. van der Wal and J. F. K. Huber, J. Chromatogr. 135, 305–320 (1977).CrossRefGoogle Scholar
  94. 94.
    L. D. Bowers and P. R. Johnson, Biochim. Biophys. Acta 161, 111–116 (1981).Google Scholar
  95. 95.
    C. L. Markert, Biology of Isoenzymes, in Isoenzymes I. Molecular Structure, C. L. Markert, ed., Academic Press, New York (1975), pp. 1–10.Google Scholar
  96. 96.
    N. M. Papadopoulos, Ann. Clin. Lab. Sci. 7, 506–510 (1977).Google Scholar
  97. 97.
    M. A. Varant and D. W. Mercer, Circulation 51, 855–859 (1975).CrossRefGoogle Scholar
  98. 98.
    S. A. G. Witteveen, B. E. Sobel, and M. DeLuca, Proc. Natl. Acad. Sci. USA 71, 1384–1387 (1974).CrossRefGoogle Scholar
  99. 99.
    G. S. Wagner, C. R. Roe, L. E. Limbird, R. A. Rosati, and A. G. Wallace, Circulation 47, 263–269 (1973).CrossRefGoogle Scholar
  100. 100.
    P. Brodelius and K. Mosbach, FEBS Lett. 35, 223–226 (1973).CrossRefGoogle Scholar
  101. 101.
    A. Ahmad, A. Surolia, and B. K. Bachhawat, Biochim. Biophys. Acta 481, 542–548 (1977).CrossRefGoogle Scholar
  102. 102.
    S. 1. 0 Agogbua and C. H. Wynn, Biochem. Soc. Trans. 3 405–408 (1975).Google Scholar
  103. 103.
    W. D. Bostick, S. R. Dinsmore, J. E. Mrochek, and T. P. Waalkes, Clin. Chem. 24, 1305–1316 (1978).Google Scholar
  104. 104.
    D. Malamud, and J. W. Drysdale, Anal. Biochem. 86, 620–647 (1978).CrossRefGoogle Scholar
  105. 105.
    G. Lum and A. L. Levy, Clin. Chem. 21, 1601–1604 (1975).Google Scholar
  106. 106.
    L. G. Morin, Clin. Chem. 23, 205–210 (1977).Google Scholar
  107. 107.
    W. K. W. Lam, L. T. Yam, H. J. Wilbur, E. Taft, and C. Y. Li, Clin. Chem. 25, 1285–1289 (1979).Google Scholar
  108. 108.
    T. D. Schlabach and F. E. Regnier, J. Chromatogr. 158, 349–364 (1978).CrossRefGoogle Scholar
  109. 109.
    P. M. Crofton and A. F. Smith, Clin. Chim. Acta 98, 253–261 (1979).CrossRefGoogle Scholar
  110. 110.
    L. Fridhandler, J. E. Berk, and M. Ueda, Clin. Chem. 18, 1493–1497 (1972).Google Scholar
  111. 111.
    J. Stepan and J. Skrha, Clin. Chim. Acta 91, 263–271 (1979).CrossRefGoogle Scholar
  112. 112.
    R. Humbel, Clin. Chim. Acta 68, 339–341 (1976).CrossRefGoogle Scholar
  113. 113.
    E. J. Sampson, S. A. Miller, S. A. McKneally, V. S. Whitner, W. H. Hannon, and C. A. Burtis, Clin. Chem. 24, 1805–1812 (1978).Google Scholar
  114. 114.
    D. W. Mercer, Clin. Chem. 20, 36–40 (1974).Google Scholar
  115. 115.
    S. Clejan, Mikrochim. Acta 1978 II, 275–284 (1978).Google Scholar
  116. 116.
    P. R. Desjardins, S. W. Rabkin, and H. K. Jacobs, Clin. Biochem. 12, 77–82 (1979).CrossRefGoogle Scholar
  117. 117.
    S. H. Chang, K. M. Gooding, and F. E. Regnier, J. Chromatogr. 125, 103–114 (1976).CrossRefGoogle Scholar
  118. 118.
    P. J. Kudirka, R. R. Schroeder, T. E. Hewett, and E. C. Toren, Jr., Clin. Chem. 22, 471–474 (1976).Google Scholar
  119. 119.
    M. Y. Hsu, M. M. Kohler, L. Barolia, and R. J. L. Bondar, Clin. Chem. 25, 14531458 (1974).Google Scholar
  120. 120.
    T. D. Schlabach, J. A. Fulton, P. B. Mockridge, and E. C. Toren, Jr., Anal. Chem. 52, 729–733 (1980).CrossRefGoogle Scholar
  121. 121.
    R. R. Schroeder, P. J. Kudirka, and E. C. Toren, Jr., J. Chromatogr. 134, 83–90 (1977).CrossRefGoogle Scholar
  122. 122.
    M. S. Denton, W. D. Bostick, S. R. Dinsmore, and J. E. Mrochek, Clin. Chem. 24, 1408–1413 (1978).Google Scholar
  123. 123.
    T. D. Schlabach, J. A. Fulton, P. B. Mochridge, and E. C. Toren, Jr., Clin. Chem. 26, 707–711 (1980).Google Scholar
  124. 124.
    J. A. Fulton, T. D. Schlabach, J. E. Kerl, and E. C. Toren, Jr., J. Chromatogr. 175, 269–281 (1979).Google Scholar
  125. 125.
    J. A. Fulton, T. D. Schlabach, J. E. Kerl, and E. C. Toren, Jr., J. Chromatogr. 175, 283–291 (1979).CrossRefGoogle Scholar
  126. 126.
    T. D. Schlabach, J. A. Fulton, P. B. Mochridge, and E. C. Toren, Jr., Clin. Chem. 25, 1600–1607 (1979).Google Scholar
  127. 127.
    M. S. Denton, W. D. Bostick, S. R. Dinsmore, and J. E. Mrochek, Continuously referenced, on-line monitoring of creatine kinase and lactate dehydrogenase isoenzymes for use in clinical diagnostics, in Biological! Biomedical Applications of Liquid Chromatography II, G. Hawk, ed., Marcel Dekker, New York (1979), pp. 165–191.Google Scholar
  128. 128.
    W. D. Bostick, M. S. Denton, and S. R. Dinsmore, New developments in on-line isoenzyme monitoring for use in clinical diagnostics, in Biological/Biomedical Applications of Liquid Chromatography Ill, G. Hawk, ed., Marcel Dekker, New York (1981).Google Scholar
  129. 129.
    A. Lundin, A. Rickardson, and A. Thore, Anal. Biochem. 75, 611–620 (1976).CrossRefGoogle Scholar
  130. 130.
    J. J. Lemasters and C. R. Hackenbrock, Measurement of adenosine triphosphate with firefly luciferase luminescence, in Methods in Enzymology, Vol. LVI, Academic Press, New York (1979), pp. 530–544.Google Scholar
  131. 131.
    W. D. Bostick, M. S. Denton, and S. R. Dinsmore, Clin. Chem. 26, 712–717 (1980).Google Scholar
  132. 132.
    Y. Lee, I. Jablonski, and M. DeLuca, Anal. Biochem. 80, 496–507 (1978).CrossRefGoogle Scholar
  133. 133.
    L. Y. Brovko, Sint. Issled. Biol. Soedin., Tezisy Dokl. Konf. Molodykh Uch., 6th, 62 (1978) [Chem. Abstr. (1980) 92: 14 2658u ].Google Scholar
  134. 134.
    C. Haggerty, E. Jablonski, L. Stay, and M. DeLuca, Anal. Biochem. 88, 162–173 (1978).CrossRefGoogle Scholar
  135. 135.
    S. C. Tu and J. W. Hastings, Proc. Natl. Acad. Sci. USA 77, 249–252 (1980).CrossRefGoogle Scholar
  136. 136.
    E. Jablonski and M. DeLuca, Clin. Chem. 25, 1622–1627 (1979).Google Scholar
  137. 137.
    N. Chamoles and D. Karcher, Clin. Chim. Acta 30, 337–341 (1970).CrossRefGoogle Scholar
  138. 138.
    H. Mollering, A. W. Wahlefield, and G. Michal, Visualization of NAD(P)-dependent reaction, in Principles of Enzymatic Analysis, H. W. Bergmeyer, ed., Verlag Chemie, New York (1978), pp. 88–93.Google Scholar
  139. 139.
    M. D. Smith and C. L. Olson, Anal. Chem. 46, 1544–1547 (1974).CrossRefGoogle Scholar
  140. 140.
    M. D. Smith and C. L. Olson, Anal. Chem. 47, 1074–1077 (1975).CrossRefGoogle Scholar
  141. 141.
    A. S. Attiyat, E. L. Gulberg, and G. D. Christina, Environ. Instrumentation 9, 261–275 (1979).CrossRefGoogle Scholar
  142. 142.
    H. A. Moye and T. E. Wake, Anal. Lett. 9 891–920 (1976).Google Scholar
  143. 143.
    E. K. Bauman, I,. H. Goodson, G. G. Guilbault, and D. N. Kramer, Anal. Chem. 37, 1378–1381 (1965).CrossRefGoogle Scholar
  144. 144.
    G. G. Guilbault and D. N. Kramer, Anal. Chem. 37, 1675–1680 (1965).CrossRefGoogle Scholar
  145. 145.
    L. Ogren and G. Johansson, Anal. Chim. Acta 96, 1–11 (1978).Google Scholar
  146. 146.
    B. Mattiasson, B. Danielsson, C. Hermansson, and K. Mosbach, FEBS Lett. 85, 203–206 (1978).CrossRefGoogle Scholar
  147. 147.
    P. Cremonesi and R. Bovara, Biotechnol. Bioengr. 18, 1487–1491 (1976).CrossRefGoogle Scholar
  148. 148.
    T. Iwata and K. Yamasaki, J. Biochem. 56, 424–431 (1964).Google Scholar
  149. 149.
    M. J. Crowell and I. A. MacDonald, Clin. Chem. 28, 1298–1300 (1980).Google Scholar
  150. 150.
    Y. Yamaguchi, C. Hayaski, and K. Miyai, J. Chromatogr. 182, 430–434 (1980).CrossRefGoogle Scholar
  151. 151.
    T. Nambara, J. Goto, M. Hasegawa, and H. Kato, Quantitation of bild acids in biological fluids by HPLC, in Biological/Biomedical Applications of Liquid Chromatography II, G. L. Hawk, ed., Marcel Dekker, New York (1979), pp. 359–374.Google Scholar
  152. 152.
    S. Okuyama, N. Kokubun, S. Higashidate, D. Uemura, and Y. Hirata, Chem. Lett. 12, 1443–1446 (1979).CrossRefGoogle Scholar
  153. 153.
    L. Ogren, I. Csiky, L. Risinger, L. G. Nilsson, and G. Johansson, Anal. Chim. Acta 117, 71–79 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Larry D. Bowers
    • 1
  • William D. Bostick
    • 2
  1. 1.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Chemical Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations