The Role of Hemodynamic Alterations in the Pathogenesis of Diabetic Glomerulopathy

  • Thomas H. Hostetter
  • Barry M. Brenner


Although nephrotic-range proteinuria and progressive azotemia are unequivocal indications of disordered glomerular function in patients with long-standing insulin-dependent diabetes mellitus, it is apparent that alterations in glomerular function also occur at an early stage of this disease in humans and experimental animals. Stalder and Schmid1 reported more than 20 years ago that the glomerular filtration rate (GFR) is elevated above normal in diabetic children and young adults, a finding confirmed by Ditzel and Schwartz2 and extensively investigated in recent years by Mogensen.3,4 Mogensen described a 40% increment in GFR in 11 newly diagnosed juvenile diabetic patients when compared with values in 31 normal subjects of similar age.3 This remarkable hyperfiltration was shown to be related to the patient’s metabolic status since reduction of blood sugar levels over several days to weeks by standard insulin therapy tended to return GFR to normal or near-normal levels. Indeed, recent studies by Christiansen et al.5 have demonstrated that with reduction in blood glucose levels to normal in diabetics by continuous insulin infusion, GFR also declines from elevated to near-normal values in a matter of hours.


Renal Mass Renal Plasma Flow Hemodynamic Alteration Unilateral Nephrectomy Diabetic Glomerulopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stalder G, Schmid R: Severe functional disorders of glomerular capillaries and renal hemodynamics in treated diabetes mellitus during childhood. Ann Paediat 193: 129–138, 1959.PubMedGoogle Scholar
  2. 2.
    Ditzel J, Schwartz M: Abnromally increased glomerular filtration rate in short-term insulin-treated diabetic subjects. Diabetes 16: 264–267, 1967.PubMedGoogle Scholar
  3. 3.
    Mogensen CE: Kidney function and glomerular permeability to macromolecules in early juvenile diabetes. Scand J Clin Lab Invest 28: 91–100, 1971.PubMedCrossRefGoogle Scholar
  4. 4.
    Mogensen CE: Renal function changes in diabetes. Diabetes 25: 872–879, 1976.PubMedGoogle Scholar
  5. 5.
    Christiansen JS, Frandsen M, Parving H-H: The effect of intravenous insulin infusion on kidney function in insulin-dependent diabetes mellitus. Diabetologia 20: 199–204, 1981.PubMedGoogle Scholar
  6. 6.
    Mogensen CE: Glomerular filtration rate and renal plasma flow in normal and diabetic man during elevation of blood sugar levels. Scand J Clin Lab Invest 28: 177–182, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Brochtner-Mortensen J: The glomerular filtration rate during moderate hyperglycemia in normal man. Acta Med Scand 194: 31–37, 1973.CrossRefGoogle Scholar
  8. 8.
    Christiansen JS, Frandsen M, Parving H-H: Effect of intravenous glucose infusion on renal function in normal man and in insulin dependent diabetes. Diabetologia 21: 368–373, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Osterby R, Gundersen HJG: Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 11: 225–229, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Seyer-Hansen K, Hansen J, Gundersen HJG: Renal hypertrophy in experimental diabetes. Diabetologia 18: 501–505, 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Unger RH: Diabetes and the alpha cell. Diabetes 25: 136–151, 1976.PubMedGoogle Scholar
  12. 12.
    Lundbaek K: Growth hormone’s role in diabetic microangiography. Diabetes 25 (suppl. 2): 845–849, 1976.PubMedGoogle Scholar
  13. 13.
    Parving H-H, Christiansen JS, Noer I, et al: The effect of glucagon infusion on kidney function in short-term insulin-dependent juvenile diabetes. Diabetologia 19: 350–354, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Corvilain J, Abramow M: Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest 41: 1230–1235, 1962.PubMedCrossRefGoogle Scholar
  15. 15.
    Christlieb AR: Renin, angiotensin, and norepinephrine in alloxan diabetes. Diabetes 23: 962–970, 1974.PubMedGoogle Scholar
  16. 16.
    Christensen NJ: Plasma norepinephrine and epinephrine in untreated diabetics, during fasting and after insulin administration. Diabetes 23: 1–8, 1974.PubMedGoogle Scholar
  17. 17.
    Johnson M, Reece AH, Harrison HE: An imbalance in arichadonic acid metabolism in diabetes. Adv Prostaglandin Thromboxane Res 8: 1283–1286, 1980.PubMedGoogle Scholar
  18. 18.
    Altura BM, Halevy S, Turlapaty PDMV: Vascular smooth muscle in diabetes and its influence on the reactivity of blood vessels. Adv Microcirc 8: 118–150, 1979.Google Scholar
  19. 19.
    Christlieb AR, Janica HU, Kraus B, et al: Vascular reactivity to angiotensin II and to norepinephrine in diabetic subjects. Diabetes 25: 268–274, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Brenner BM, Humes HD: Mechanics of glomerular ultrafiltration. N Engl J Med 297: 148154, 1977.Google Scholar
  21. 21.
    Christiansen JS, Gammelgard J, Frandsen M, et al: Increased kidney size, glomerular filtration rate, and renal plasma flow in short term insulin-dependent diabetics. Diabetologia 20: 451–456, 1981.PubMedGoogle Scholar
  22. 22.
    Hostetter TH, Troy JL, Brenner BM: Glomerular hemodynamics in experimental diabetes. Kidney Int 19: 410–415, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Michels LD, Keane WF, Davidman M: Glomerular function and albuminuria in alloxan diabetes. The effects of insulin. Clin Res 28: 455A, 1980.Google Scholar
  24. 24.
    Jensen PK, Christiansen JS, Steven K, et al: Renal hemodynamics in diabetic rats. Diabetologia 19: 286, 1980.Google Scholar
  25. 24.
    Jensen PK, Christiansen JS, Steven K, et al: Renal hemodynamics in diabetic rats. Diabetologia 19: 286, 1980.Google Scholar
  26. 24.
    Jensen PK, Christiansen JS, Steven K, et al: Renal hemodynamics in diabetic rats. Diabetologia 19: 286, 1980.Google Scholar
  27. 27.
    Couser NG, Stilmant MM: Mesangial lesions and focal sclerosis in the aging rat. Lab Invest 33: 491–501, 1975.PubMedGoogle Scholar
  28. 28.
    Velosa JA, Glasser RJ, Nevins TE, et al: Experimental model of focal sclerosis. II. Correlation with immunopathologic changes, macromolecular kinetics, and polyanion loss. Lab Invest 36: 527–534, 1977.PubMedGoogle Scholar
  29. 29.
    Mitch WE, Walser M, Buffington CA, et al: A simple method for estimating progression of chronic renal failure. Lancet 4: 1326–1328, 1976.CrossRefGoogle Scholar
  30. 30.
    Rutherford WE, Blondin J, Miller JP, et al: Chronic progressive renal disease: Rate of change of serum creatinine. Kidney Int 11: 62–70, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Kleinknecht D, Grunfeld JP, Cornez PC, et al: Diagnostic procedures and long-term prognosis in bilateral renal cortical necrosis. Kidney Int 4: 390–400, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Torres VE, Velosa JA, Holley KE, et al: The progression of vesicoureteral reflux. Ann Int Med 92: 776–784, 1980.PubMedGoogle Scholar
  33. 33.
    Steffes MW, Brown DM, Mauer SM: Diabetic glomerulopathy following unilateral nephrectomy in the rat. Diabetes 27: 35–41, 1978.PubMedCrossRefGoogle Scholar
  34. 34.
    Deen WM, Maddox DA, Robertson CR, et al: Dynamics of glomerular ultrafiltration in the rat. VII: Response to reduced renal mass. Am J Physiol 227: 556–562, 1974.PubMedGoogle Scholar
  35. 35.
    Mauer SM, Steffes MW, Azar S, et al: The effects of Goldblatt hypertension on development of the glomerular lesions of diabetes mellitus in the rat. Diabetes 27: 738–744, 1978.PubMedCrossRefGoogle Scholar
  36. 36.
    Berkman J, Rifkin H: Unilateral nodular diabetic glomerulosclerosis (KimmelstielWilson): Report of a case. Metabolism 22: 715–722, 1973.PubMedCrossRefGoogle Scholar
  37. 37.
    Viberti GC, Pickup JC, Jarett RJ, et al: Effect of control of blood glucose on urinary excretion of albumin and Jß2 microgluculin in insulin-dependent diabetes. N Engl J Med 300: 638–641, 1979.PubMedCrossRefGoogle Scholar
  38. 38.
    Mogensen CE: Urinary albumin excretion in early and long-term juvenile diabetes. Scand J Clin Lab Invest 28: 183–193, 1971.PubMedCrossRefGoogle Scholar
  39. 39.
    Rasch R: Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment: Albumin excretion. Diabetologia 18: 413–416, 1980.PubMedGoogle Scholar
  40. 40.
    Raij I, Keane WF, Osswald H, et al: Mesangial function in ureteral obstruction in the rat. J Clin Invest 64: 1204–1212, 1979.PubMedCrossRefGoogle Scholar
  41. 41.
    Rasch R: Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment: kidney size and glomerular volume. Diabetologia 16: 125–128, 1979.PubMedCrossRefGoogle Scholar
  42. 42.
    Rasch R: Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment: Glomerular basement membrane thickness. Diabetologia 16: 319–324, 1979.PubMedCrossRefGoogle Scholar
  43. 43.
    Steffes MW, Brown DM, Basgen JM, et al: Amelioration of mesangial volume and surface alterations following islet transplantation in diabetic rats. Diabetes 29: 509–515, 1980.PubMedGoogle Scholar
  44. 44.
    Steffes MW, Brown DM, Basgen JM, et al: Glomerular basement membrane thickness following islet transplantation in the diabetic rat. Lab Invest 41: 116–118, 1979.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Thomas H. Hostetter
    • 1
  • Barry M. Brenner
    • 2
    • 3
  1. 1.Laboratory of Kidney and Electrolyte PhysiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Renal DivisionBrigham and Women’s HospitalBostonUSA

Personalised recommendations