Hyperfiltration as a Major Causative Factor in Initiation and Progression of Glomerulosclerosis

  • Thomas H. Hostetter
  • Helmut G. Rennke
  • Barry M. Brenner


The augmentation of single-nephron glomerular filtration rate (SNGFR) that follows loss of functioning renal mass is generally regarded as a beneficial adaptation in the sense that total filtration by the remnant kidney falls less than would be the case had this augmentation not occurred. However, several lines of evidence have been developed that, when taken together, suggest that single-nephron hyperfiltration may have maladaptive and eventually injurious consequences. For nearly 50 years it has been recognized that removal of approximately three fourths or more of the renal mass in the rat, either by surgical resection, infarction, or a combination of these maneuvers, results in a syndrome of progressive azotemia, proteinuria, and eventual glomerular sclerosis.l–3


Renal Mass Unilateral Nephrectomy Remnant Kidney Renal Ablation Subtotal Nephrectomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chanutin A, Ferris E: Experimental renal insufficiency produced by partial nephrectomy: 1. Control diet. Arch Int Med 49: 767, 1932.CrossRefGoogle Scholar
  2. 2.
    Morrison AB: Experimental chronic renal insufficiency. Meth Arch Exp Path 1: 455, 1966.Google Scholar
  3. 3.
    Purkerson ML, Hoffsten PE, Klahr S: Pathogenesis of the glomerulopathy associated with renal infarction in rats. Kidney Int 9: 407, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Deen WM, Maddox DA, Robertson CR, et al: Dynamics of glomerular ultrafiltration in the rat. VII: Reponse to reduced renal mass. Am J Physiol 227: 556, 1974.PubMedGoogle Scholar
  5. 5.
    Kaufman JM, DiMeola HJ, Siegel NJ, et al: Compensatory adaptation of structure and function following progessive renal ablation. Kidney Int 6: 10, 1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Hostetter TH, Olson JL, Rennke HG, et al: Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol: Renal Fluid Electro 241: F85, 1981.Google Scholar
  7. 7.
    Kaufman JM, Siegel NJ, Hayslett JP: Functional and hemodynamic adaptation to progressive renal ablation. Circ Res 36: 286, 1975.PubMedGoogle Scholar
  8. 8.
    Myers BD, Deen WM, Robertson CR, et al: Dynamics of glomerular ultrafiltration. VIII. Effects of hematocrit. Circ Res 36: 425, 1975.PubMedGoogle Scholar
  9. 9.
    Tucker BJ, Blantz RC: An analysis of the determinants of nephron filtration rate. Am J Physiol 232:F477, 1977A.Google Scholar
  10. 10.
    Shimamura T, Morrison AB: A progressive glomerulosclerosis occurring in partial five-sixths nephrectomy. Am J Path 79: 95, 1975.PubMedGoogle Scholar
  11. 11.
    Elema JD, Arends A: Focal and segmental glomerular hyalinosis in the rat. Lab Invest 33: 554, 1975.PubMedGoogle Scholar
  12. 12.
    Olson JL, Hostetter TH, Rennke HG, et al: Altered charge and size selective properties of the glomerular wall: A response to reduced renal mass. Kidney Int (in press).Google Scholar
  13. 13.
    Steffes MW, Brown DM, Mauer SM: Diabetic glomerulopathy following unilateral nephrectomy in the rat. Diabetes 27: 35, 1978.PubMedCrossRefGoogle Scholar
  14. 14.
    White IN, Grollman A: Autoimmune factors associated with infarction of the kidney. Nephron 1: 93, 1964.PubMedCrossRefGoogle Scholar
  15. 15.
    Allison MEM, Wilson CB, Gottschalk CW: Pathophysiology of experimental glomerulonephritis in rats. J Clin Invest 53: 1402, 1974.PubMedCrossRefGoogle Scholar
  16. 16.
    Maddox DA, Bennett CM, Deen WM, et al: Determinants of glomerular filtration in experimental glomerulonephritis in the rat. J Clin Invest 55: 305, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Feld CG, van Liew JB, Galaske RG, et al: Selectivity of renal injury and proteinuria in the spontaneously hypertensive rat. Kidney Int 12: 332, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Deen WM, Bohrer MP, Brenner BM: Macromolecule transport across glomerular capillaries: Application of the pore theory. Kidney Int 16: 353, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Couser NG, Stilmant MM: Mesangial lesions and focal sclerosis in the aging rat. Lab Invest 33: 491, 1975.PubMedGoogle Scholar
  20. 20.
    Velosa JA, Glasser RJ, Nevins TE, et al: Experimental model of focal sclerosis. II. Correlation with immunopathologic changes, macromolecular kinetics, and polyanion loss. Lab Invest 36: 527, 1977.PubMedGoogle Scholar
  21. 21.
    Davies DJ, Prener DB, Hardwicke J: Urinary proteins and glomerular morphometry in protein overload proteinuria. Lab Invest 38: 232, 1978.PubMedGoogle Scholar
  22. 22.
    Glasser RJ, Velosa JA, Michael AF: Experimental model of focal sclerosis. I. Relationship to protein excretion in aminonucleoside nephrosis. Lab Invest 36: 519, 1977.PubMedGoogle Scholar
  23. 23.
    Romen W, Morath R: Diffuse glomerulosclerosis—A dysfunction of mesangium? Virchows Arch Biol Cell Path 34: 205, 1979.CrossRefGoogle Scholar
  24. 24.
    Mitch WE, Walser M, Buffington CA, et al: A simple method for estimating progression of chronic renal failure. Lancet 4: 1326, 1976.CrossRefGoogle Scholar
  25. 25.
    Rutherford WE, Blondin J, Miller JP, et al: Chronic progressive renal disease: Rate of change of serum creatinine. Kidney Int 11: 62, 1977.PubMedCrossRefGoogle Scholar
  26. 26.
    Kleinknecht D, Grunfeld JP, Comez PC, et al: Diagnostic procedures and long-term prognosis in bilateral renal cortical necrosis. Kidney Int 4: 390, 1973.PubMedCrossRefGoogle Scholar
  27. 27.
    Torres VE, Velosa JA, Holley KE, et al: The progression of vesicoureteral reflux. Ann Int Med 92: 776, 1980.PubMedGoogle Scholar
  28. 28.
    Bank H, Aynedjian HS: Individual function in experimental phelonephritis. I. Glomerular filtration rate and proximal tubular sodium, potassium and water reabsorption. J Lab Clin Med 68: 713, 1966.PubMedGoogle Scholar
  29. 29.
    Kramp RA, MacDowell M, Gottschalk CW, et al: A study by microdissection and micropuncture of the structure and the function of the kidneys and the nephrons of rats with chronic renal damage. Kidney Int 5: 147, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Bricker NS, Klahr S, Rieselbach RE: The functional adaptation of the diseased kidney I. Glomerular filtration rate. J Clin Invest 43: 1915, 1964.PubMedCrossRefGoogle Scholar
  31. 31.
    Lubowitz H, Purkerson ML, Sugita M, et al: GFR per nephron and per kidney in chronically diseased (pyelo nephritic) kidney of the rat. Am J Physiol 217: 853, 1969.PubMedGoogle Scholar
  32. 32.
    Berman J, Rifkin H: Unilateral nodular diabetic glomerulosclerosis (Kimmelsteil-Wilson): Report of a case. Metabolism 22: 715, 1973.CrossRefGoogle Scholar
  33. 33.
    Beyer MM, Steinberg AD, Nilastri AD, et al: Unilateral nephrectomy: Effect on survival in NZB/NZN mice. Science 198: 511, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Thomas H. Hostetter
    • 1
  • Helmut G. Rennke
    • 2
  • Barry M. Brenner
    • 3
    • 4
  1. 1.Laboratory of Kidney and Electrolyte PhysiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of PathologyBrigham and Women’s HospitalBostonUSA
  3. 3.Department of MedicineHarvard Medical SchoolBostonUSA
  4. 4.Renal DivisionBrigham and Women’s HospitalBostonUSA

Personalised recommendations