Immunological Analysis of Cellular Heterogeneity in the Cerebellum

  • Melitta Schachner
Part of the Current Topics in Neurobiology book series (CTNB)


The complexity of connectivity in the nervous system arises from myriads of associations between different cell types. To investigate the organization of such intricate interconnections the developmental neu-robiologist chooses to dissect individual steps in cell-cell interactions during ontogenesis. The assembly of an elaborate system can then be followed from the simple stages through more complex forms to its final state. Underlying these events are several types of cell behavior such as proliferation, growth, and migration; recognition of cellular, extracellular, or subcellular partner components; and often cell death.


Purkinje Cell Granule Cell Ependymal Cell Bergmann Glia Cellular Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J., and Anderson, W. J., 1972, Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-irradiation started at birth, J. Comp. Neurol. 146:355.PubMedCrossRefGoogle Scholar
  2. Berg, G., and Schachner, M., 1981, Immunoelectronmicroscopic identification of O antigen bearing oligodendroglial cells in vitro, Cell Tissue Res. 219:313.PubMedCrossRefGoogle Scholar
  3. Berwald-Netter, Y., Bizzini, B., Couraud, F., Koulakoff, A., Martin-Montot, N., 1980, Specific surface membrane markers as probes for neuronal evolution in vivo and in vitro. I. Meeting of the International Society for Devel. Neuroscience, p. 279.Google Scholar
  4. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43:429.PubMedCrossRefGoogle Scholar
  5. Campbell, G. LeM., Schachner, M., and Sharrow, S. O., 1977, Isolation of glial cell-enriched and -depleted populations from mouse cerebellum by density gradient centrifugation and electronic cell sorting, Brain Res. 127:69.PubMedCrossRefGoogle Scholar
  6. Caviness, V., and Rakic, P., 1978, Mechanisms of cortical development: A view from mutations in mice, Ann. Rev. Neurosci. 1:297.PubMedCrossRefGoogle Scholar
  7. Das, G. D., 1974, Contact guidance and migratory cells in the developing cerebellum, Brain Res. 69:13.PubMedCrossRefGoogle Scholar
  8. Dimpfel, W., Huang, R. T. C., and Habermann, I., 1977, Gangliosides in nervous tissue and binding of 125I-labelled tetanus toxin, a neuronal marker, J.Neurochem. 29:329.PubMedCrossRefGoogle Scholar
  9. Eccles, J., Ito, M., and Szentágothai, J., 1967, The Cerebellum as a Neuronal Machine, Springer, Berlin.Google Scholar
  10. Egar, M., and Singer, M., 1972, The role of ependyma in spinal cord regeneration in the urodele, Triturus, J. Exp. Neurol. 37:422.CrossRefGoogle Scholar
  11. Eng, L. F., Vanderhaegen, J. J., Bignami, B., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28:351.PubMedCrossRefGoogle Scholar
  12. Falconer, D. S., 1951, Two new mutants “trembler” and “reeler” with neurological actions in the house mouse (Mus musculus), J. Genet. 50:192.CrossRefGoogle Scholar
  13. Franke, W. W., Schmid, E., Osborn, M., Weber, K., 1978, Different intermediate-sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 75:5034.PubMedCrossRefGoogle Scholar
  14. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1979, Intermediate-sized filaments of human endothelial cells, J. Cell Biol. 81:570.PubMedCrossRefGoogle Scholar
  15. Fujita, S., 1967, Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum, J. Cell Biol. 32:277.PubMedCrossRefGoogle Scholar
  16. Fujita, S., Shimada, M., and Nakamura, I., 1966, 3H-Thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layers of the mouse cerebellum, J. Comp. Neurol. 128:191.PubMedCrossRefGoogle Scholar
  17. Herndon, R. M., 1968, Thiophen induced granule cell necrosis in the rat cerebellum, Exp. Brain Res. 6:49.PubMedCrossRefGoogle Scholar
  18. Herndon, R. M., Margolis, G., and Kilham, L., 1971a, The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleukopenia virus (PLV). I. Elements forming the cerebellar glomeruli, J. Neuropathol. Exp. Neurol. 30:196.PubMedCrossRefGoogle Scholar
  19. Herndon, R. M., Margolis, G., and Kilham, L., 1971b, The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleukopenia virus (PLV), II. The Purkinje cell and its afferents, J. Neuropathol. Exp. Neurol. 30:557.PubMedCrossRefGoogle Scholar
  20. Hicks, S. P., 1954, The effects of ionizing radiation, certain hormones, and radiomimetric drugs on the developing nervous system, J. Cell. Comp. Physiol. 43(Suppl. 1):151.CrossRefGoogle Scholar
  21. Hicks, S. P., and D’Amato, C. J., 1966, Effects of ionizing radiations on mammalian development, in: Advances in Teratology (D. H. M. Woollam, ed.), pp. 196–250, Logos, London.Google Scholar
  22. Hirano, A., Dembitzer, H. M., 1973, Cerebellar alteration in the weaver mouse, J. Cell Biol. 56:478.PubMedCrossRefGoogle Scholar
  23. His, W., 1889, Neuroblasten und deren Entstehung im embryonalen Mark, Abhandl. Kgl. Saechs. Ges. Wiss. Math. Phys. Kl. 15:313.Google Scholar
  24. Huntington, H. W., and Terry, R. D., 1966, The origin of the reactive cells in cerebral stab wounds, J. Neuropathol. Exp. Neurol. 25:646.PubMedCrossRefGoogle Scholar
  25. Kilham, L., and Margolis, G., 1966a, Viral etiology of spontaneous ataxia of cats, Am. J. Pathol. 48:991.PubMedGoogle Scholar
  26. Kilham, L., and Margolis, G., 1966b, Spontaneous hepatitis and cerebellar “hypoplasia” in suckling rats due to congenital infections with rat virus, Am. J. Pathol. 49:457.PubMedGoogle Scholar
  27. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256:495.CrossRefGoogle Scholar
  28. Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6:511.PubMedCrossRefGoogle Scholar
  29. Korte, G. E., and Rosenbluth, J., 1980, Membrane specializations in frog ependymal astrocytes, 10th Annual Meeting, Society for Neuroscience, Abstract 247:16.Google Scholar
  30. Kuffler, S., and Nicholls, J. G., 1976, From Neuron to Brain, Sinauer Associates, Sunderland, Mass.Google Scholar
  31. Lagenaur, C., Sommer, I., and Schachner, M., 1980, Subclass of astroglia recognized in mouse cerebellum by monoclonal antibody, Dev. Biol. 79:367.PubMedCrossRefGoogle Scholar
  32. Lagenaur, C., Master, C., and Schachner, M., 1981, Changes in expression of glial antigens Ml and C1 after cerebellar injury, J. Neuroscience, in press.Google Scholar
  33. Landis, S. C., Mullen, R. J., 1978, The development and degeneration of Purkinje cells in pcd mutant mice, J. Comp. Neurol. 177:125.PubMedCrossRefGoogle Scholar
  34. Landis, D. M. D., Reese, T. S., 1977, Structure of the Purkinje cell membrane in staggerer and weaver mutant mouse. J. Comp. Neurol. 171:247.PubMedCrossRefGoogle Scholar
  35. Landis, D. M. D., Sidman, R. L., 1974, Cerebellar cortical development in the staggerer mouse, J. Neuropathol. Exp. Neurol. 33:180.Google Scholar
  36. Lane, P., 1964, Personal communication in Mouse News Letter 30:32.Google Scholar
  37. Llinás, R., 1969, Neurobiology of cerebellar evolution and development, Proceedings of the First International Symposium of the Institute for Biomedical Research, AMA Educational Research Foundation, Chicago, IL.Google Scholar
  38. Mares, V., Lodin, Z., and Srajer, J., 1970, The cellular kinetics of the developing mouse cerebellum. I. The generation cycle, growth fraction and rate of proliferation of the external granular layer, Brain Res. 23:323.PubMedCrossRefGoogle Scholar
  39. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J.-P., Sotelo, C., 1977, Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse, Philos. Trans. R. Soc. London 281:1.CrossRefGoogle Scholar
  40. Maxwell, D. S., and Krüger, L., 1965, The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles, J. Cell Biol. 25:141.PubMedCrossRefGoogle Scholar
  41. Meier, D. H., and Schachner, M., 1982, Immunoselection of oligodendrocytes by magnetic beads. II. In vitro maintenance of immunoselected oligodendrocytes, J. Neuroscience Res., in press.Google Scholar
  42. Meier, D. H., Lagenaur, C, and Schachner, M., 1982, Immunoselection of oligodendrocytes by magnetic beads. I. Determination of antibody coupling parameters and cell binding conditions, J. Neuroscience Res., in press.Google Scholar
  43. Miale, I. L., and Sidman, R. L., 1961, An autoradiographic analysis of histogenesis in the mouse cerebellum, Exp. Neurol. 4:277.PubMedCrossRefGoogle Scholar
  44. Mirsky, R., Wendon, L., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurones in culture, Brain Res. 148:251.PubMedCrossRefGoogle Scholar
  45. Mugnaini, E., and Forströnen, P. F., 1967, Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo, Z. Zellforsch. Mikrosk. Anat. Abt. Histochem. 77:115.CrossRefGoogle Scholar
  46. Mullen, R. J., and LaVail, M. M., 1975, Two new types of retinal degeneration in cerebellar mutant mice, Nature (London) 258:528.CrossRefGoogle Scholar
  47. Mullen, R. J., Eicher, E. M., and Sidman, R. L., 1976, Purkinje cell degeneration, a new neurological mutation in the mouse, Proc. Natl. Acad. Sci. U.S.A. 73:208.PubMedCrossRefGoogle Scholar
  48. Nathanson, N., Cole, G. A., and Van der Loos, H., 1969, Heterotopic cerebellar granule cells following administration of cyclophosphamide to suckling rats, Brain Res. 15:532.PubMedCrossRefGoogle Scholar
  49. Nieuwenhuys, R., 1964, Comparative anatomy of the cerebellum, Progr. Brain Res. 25:1.CrossRefGoogle Scholar
  50. Nordlander, R. H., and Singer, M., 1978, The role of ependyma in regenaration of the spinal cord in the urodele amphibian tail, J. Comp. Neurol. 180(2):349.PubMedCrossRefGoogle Scholar
  51. Oksche, A., 1980, Neuroglia I, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Palay, S., and Chan-Palay, V., 1974, Cerebellar Cortex Cytology and Organization, Springer-Verlag, New York.CrossRefGoogle Scholar
  53. Peters, A., Palay, S. L., and DeF. Webster, H., 1976, The Fine Structure of the Nervous System. The Neurons and Supporting Cells, Saunders, Philadelphia.Google Scholar
  54. Privat, A., 1975, Postnatal gliogenesis in the mammalian brain, Int. Rev. Cytol. 40:281.PubMedCrossRefGoogle Scholar
  55. Raaf, J., and Kernohan, J. W., 1944, A study of the external granular layer in the cerebellum, Am. J. Anat. 75:151.CrossRefGoogle Scholar
  56. Raff, M. C., Brockes, J. P., Fields, K. L., and Mirsky, R., 1979a, Neural cell markers, the end of the beginning, Progr. Brain Res. 51:17.Google Scholar
  57. Raff, M. C., Fields, K. L., Hakomori, S., Mirsky, R., Pruss, R. M., and Winter, J., 1979b, Cell type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174:283.PubMedCrossRefGoogle Scholar
  58. Rakic, P., 1971, Neuron-glia relationship during granule cell migration in developing cerebellar cortex: A Golgi and electronmicroscopic study in Macacus thesus, J. Comp. Neurol. 141:283.PubMedCrossRefGoogle Scholar
  59. Rakic, P., 1972, Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer, J. Comp. Neurol. 146:335.PubMedCrossRefGoogle Scholar
  60. Rakic, P., 1973, Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons, J. Comp. Neurol. 147:523.PubMedCrossRefGoogle Scholar
  61. Rakic, P., and Sidman, R. L., 1973, Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice, J. Comp. Neurol. 152:133.PubMedCrossRefGoogle Scholar
  62. Ramón y Cajal, S., 1909–1911, Histologie du Système Nerveux de l’Homme et des Vertébrés, 2 vols. (L. Azoulay, trans.). (Reprinted by Instituto Ramón y Cajal del C.S.I.C., Madrid, 1952–1955).Google Scholar
  63. Ramón y Cajal, S., 1955, Histologie du Système Nerveux, vol 2, C.S.I.C., Madrid.Google Scholar
  64. Rezai, Z., Yoon, C. H., 1972, Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice, Dev. Biol. 29:17.PubMedCrossRefGoogle Scholar
  65. Rohrer, H., and Schachner, M., 1980, Surface proteins of cultured mouse cerebellar cells, J. Neurochem. 35:792.PubMedCrossRefGoogle Scholar
  66. Schachner, M., and Willinger, M., 1979a, Developmental expression of oligodendrocyte specific cell surface markers: NS-1 (nervous system antigen-1), cerebroside, and basic protein of myelin, in: The Menarini Series on Immunopathology P. A. Miescher, L. Bolis, S. Gorini, T. A. Lambo, G. J. V. Nossal, and G. Torrigiani, eds.), vol. 2, pp. 37–60.Google Scholar
  67. Schachner, M., and Willinger, M., 1979b, Cell type specific cell surface antigens in the cerebellum, Prog. Brain Res. 51:23.Google Scholar
  68. Schachner, M., Wortham, K. A., Carter, L. D., and Chaffee, J. K., 1975, NS-4 (nervous system antigen-4), a cell surface antigen of developing and adult mouse brain and mature sperm, Dev. Biol. 44:313.PubMedCrossRefGoogle Scholar
  69. Schachner, M., Wortham, K. A., Ruberg, M. Z., Dorfman, S., and LeM. Campbell, G., 1977, Brain cell surface antigens detected by anti-corpus callosum antiserum, Brain Res. 127:87.PubMedCrossRefGoogle Scholar
  70. Schachner, M., Smith, C., and Schoonmaker, G., 1978a, Immunological distinction between neurofilament and glial fibrillary acidic proteins by mouse antisera and their immunohistological distribution, Dev. Neurosci. 1:1.PubMedCrossRefGoogle Scholar
  71. Schachner, M., Schoonmaker, G., and Hynes, R. O., 1978b, Cellular and subscellular localization of LETS protein in the nervous system, Brain Res. 158:149.PubMedCrossRefGoogle Scholar
  72. Schachner, M., Kim, S. K., and Zehnle, R., 1981, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies, Dev. Biol. 83:328.PubMedCrossRefGoogle Scholar
  73. Schaper, A., 1897a, Die frühesten Differenzierungsvorgänge im Centralnervensystem, Arch. Entwicklungsmech. Org. 5:81.CrossRefGoogle Scholar
  74. Schaper, A., 1897b, The earliest differentiation in the central nervous system of vertebrates, Science 5:430.Google Scholar
  75. Schmechel, D. E., and Rakic, P., 1979, A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes, Anat. Embryol. 156:115.PubMedCrossRefGoogle Scholar
  76. Schnitzer, J., and Schachner, M., 1979, Isolation and characterization of cell populations of early postnatal mouse cerebellar cortex in vitro, VII International Meeting of the International Society of Neurochemistry, Jerusalem.Google Scholar
  77. Schnitzer, J., and Schachner, M., 1981a, Expression of Thy-1, H-2 and NS-4 cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum, J. Neuroimmunol. 1:429.PubMedCrossRefGoogle Scholar
  78. Schnitzer, J., and Schachner, M., 1981b, Characterization of isolated mouse cerebellar cell populations in vitro, J. Neuroimmunol. 1:457.Google Scholar
  79. Schnitzer, J., and Schachner, M., 1981c, Developmental expression of cell type-specific markers in mouse cerebellar cortical cells in vitro, J. Neuroimmunol. 1:471.PubMedCrossRefGoogle Scholar
  80. Schnitzer, J., Franke, W. W., and Schachner, M., 1981, Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system, J. Cell Biol. 90:435.PubMedCrossRefGoogle Scholar
  81. Shimada, M., and Langman, J., 1970, Repair of the external granular layer after postnatal treatment with 5-fluorodeoxyuridine, Am. J. Anat. 129:247.PubMedCrossRefGoogle Scholar
  82. Sidman, R. L., 1968, Development of interneuronal connections in brains of mutant mice, in: Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.), pp.163–193, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  83. Sidman, R. L., Lane, P. W., Dickie, M. M., 1962, Staggerer, a new mutation in the mouse cerebellum, Science 137:610.PubMedCrossRefGoogle Scholar
  84. Sidman, R. L., Green, M. C., and Appel, S. H., 1965, Catalog of the Neurological Mutants of the Mouse, p. 82, Harvard University Press, Cambridge, Mass.Google Scholar
  85. Smart, I., and Leblond, C. P., 1961, Evidence for division and transformation of neuroglia cells in the mouse brain as derived from radioautography after injection of 3H-thymidine, J. Comp. Neurol. 116:349.CrossRefGoogle Scholar
  86. Sommer, I., and Schachner, M., 1981a, 04 antigen-positive and Ol antigen-negative cells are precursors of Ol antigen-positive oligodendrocytes, submitted for publication.Google Scholar
  87. Sommer, I., and Schachner, M., 1981b, Monoclonal antibodies (Ol to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system, Dev. Biol. 83:311.PubMedCrossRefGoogle Scholar
  88. Sommer, I., and Schachner, M., 1981c, Expression of glial antigens C1 and M1 in developing and adult neurologically mutant mice, J. Supramol. Struct., in press.Google Scholar
  89. Sommer, I., Lagenaur, C., and Schachner, M., 1981, Recognition of Bergmann glial and ependymal cells in the mouse nervous system by monoclonal antibody, J. Cell Biol. 90:448.PubMedCrossRefGoogle Scholar
  90. Sotelo, C., 1975a, Dendritic abnormalities of Purkinje cells in cerebellum of neurological mutant mice (weaver and staggerer), Adv. Neurol. 12:335.PubMedGoogle Scholar
  91. Sotelo, C., 1975b, Anatomical, physiological and biochemical studies of cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse, Brain Res. 94:19.PubMedCrossRefGoogle Scholar
  92. Sotelo, C., Changeux, J.-P., 1974a, Transsynaptic degeneration “en cascade” in the cerebellar cortex of staggerer mutant mice, Brain Res. 67:519.PubMedCrossRefGoogle Scholar
  93. Sotelo, C., Changeux, J.-P., 1974b, Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse, Brain Res. 77:484.PubMedCrossRefGoogle Scholar
  94. Tapscott, S. J., Bennett, G. S., and Holtzer, H., 1980, Transition between intermediate filament types during neurogenesis, J. Cell Biol. 87:181a.Google Scholar
  95. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J.-M., and Martin, G. R., 1979, Laminin—A glycoprotein from basement membranes, J. Biol. Chem. 254:9933.PubMedGoogle Scholar
  96. Uzman, L. L., 1960, The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake, J. Comp. Neurol. 114:137.PubMedCrossRefGoogle Scholar
  97. Van Heyningen, W. E., 1963, The fixation of tetanus toxin, strychnine, serotonin and other substances by ganglioside, J. Gen. Microbiol. 31:375.CrossRefGoogle Scholar
  98. Vaughn, J. E., Hinds, P. L., and Skoff, R. P., 1970. Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The mutipotential glia, J. Comp. Neurol. 140:175.PubMedCrossRefGoogle Scholar
  99. Webster, W., Shimada, M., and Langman, J., 1973, Effect of fluorodeoxyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse, Am. J. Anat. 137:67.PubMedCrossRefGoogle Scholar
  100. Willinger, M., and Schachner, M., 1978, Distribution of Gm1 ganglioside in developing cerebellum, J. Supramol. Struct. Suppl. 2:128.Google Scholar
  101. Willinger, M., and Schachner, M., 1980, Gm1 ganglioside as a marker for neuronal differentiation in mouse cerebellum, Devel. Biol. 74:101.CrossRefGoogle Scholar
  102. Zalc, B., Monge, M., Dupouey, P., Hauw, J. J., and Baumann, N. A., 1981, Immuno-histochemical localization of galactosyl- and sulfogalactosylceramide in the brain of 30-day-old mouse, Brain Res. 211:341.PubMedCrossRefGoogle Scholar
  103. Zamenhof, S., Grauel, L., and van Marthens, E., 1971, The effect of thymidine and 5-bromodeoxyuridine on developing chick embryo brain, Res. Commun. Chem. Pathol. Pharmacol. 2:261.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Melitta Schachner
    • 1
  1. 1.Department of NeurobiologyUniversity of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations