Immunological Studies of the Retina

  • Colin J. Barnstable
Part of the Current Topics in Neurobiology book series (CTNB)


The wealth of information about the mammalian CNS that has come from anatomical and electrophysiological studies has provided many clues about the cell types, and their connections, involved in a number of neural pathways. However, neurobiologists have lacked a method for translating this information into the language of biochemistry and molecular biology so as to allow an understanding of the molecular basis of neural development and function. Antibodies provide a unique tool with which to make such a translation. They are fixable and can be coupled to enzymes, metalloproteins, fluorescent dyes, or radioactive isotopes to allow anatomical visualization of antigenic sites at the light-and electron-microscopic levels. Antibodies can be used as pharmacological agents to affect rapid physiological processes such as transmitter binding to receptors or ion channel kinetics. In addition, it may be possible to use them to study slower processes such as cellular migration and intercellular interactions. The biochemical purification of molecules can be monitored by their antigenic activity or can be achieved directly by the use of antibody affinity columns (for example, see Parham et al., 1979). Similar techniques also allow the measurement of antigen metabolism and, in combination with other in vitro systems, can even allow the identification and isolation of the relevant genes (Schechter, 1974; Shapiro et al., 1974).


Outer Segment Plexiform Layer Immunological Study Outer Nuclear Layer Immunofluorescent Label 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay, A. N., 1977, A radioimmunoassay to recognise new brain differentiation antigens, Brain Res. 133:139.PubMedCrossRefGoogle Scholar
  2. Barclay, A. N., 1979, Localization of the Thy-1 antigen in the cerebellar cortex of rat brain by immunofluorescence during postnatal development, J. Neurochem. 32:1249.PubMedCrossRefGoogle Scholar
  3. Barclay, A. N., Letarte-Muirhead, M., and Williams, A. F., 1975, Purification of the Thy-1 molecule from rat brain, Biochem. J. 151:699.PubMedGoogle Scholar
  4. Barnstable, C. J., 1980, Monoclonal antibodies which recognise different cell types in the rat retina, Nature (London) 286:231.CrossRefGoogle Scholar
  5. Barnstable, C. J., 1981, Developmental studies of the rat retina using monoclonal antibodies, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. C. Raff, and L. F. Reichardt, eds.), p. 219, Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  6. Barnstable, C. J., Bodmer, W. F., Brown, G., Galfré, G., Milstein, C., Williams, A. F., and Ziegler, A., 1978, Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens—New tools for genetic analysis, Cell 14:9.PubMedCrossRefGoogle Scholar
  7. Bloom, F. E., Veda, T., Battenberg, E., and Greengard, P., 1979, Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain, Proc. Natl. Acad. Sci. U.S.A. 76:5982.PubMedCrossRefGoogle Scholar
  8. Brockes, J. P., Fields, K. L., and Raff, M. C., 1977, A surface antigenic marker for rat Schwann cells, Nature (London) 266:364.CrossRefGoogle Scholar
  9. Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J., and Bodmer, W. F., 1979, Monoclonal antibodies for analysis of the HLA system, Immunol. Rev. 47:3.PubMedCrossRefGoogle Scholar
  10. Burden, S., 1981, Monoclonal antibodies to the frog nerve-muscle synapse, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. C. Raff, and L. F. Reichardt, eds.), p. 247, Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  11. Cajal, S. R., 1972, The Structure of the Retina (trans. S. A. Thorpe and M. Glickstein), C. C. Thomas, Springfield, Ill.Google Scholar
  12. Carlson, S. S., and Kelly, R. B., 1980, An antiserum specific for cholinergic synaptic vesicles from electric organ, J. Cell Biol. 87:98.PubMedCrossRefGoogle Scholar
  13. Chaffee, J. K., and Schachner, M., 1978, NS-7 (Nervous System Antigen-7): A cell surface antigen of mature brain, kidney, and spermatozoa shared by embryonal tissues and transformed cells, Dev. Biol. 62:185.PubMedCrossRefGoogle Scholar
  14. Chalazonitis, A., Greene, L. A., and Shain, W., 1975, Excitability and chemosensitivity properties of a somatic cell hybrid between mouse neuroblastoma and sympathetic ganglion cells, Exp. Cell Res. 96:225.PubMedCrossRefGoogle Scholar
  15. Cohen, A. I., 1970, Further studies on the question of the potency of saccules in outer segments of vertebrate photoreceptors, Vision Res. 10:445.PubMedCrossRefGoogle Scholar
  16. Cotton, R. G. H., Secher, D. S., and Milstein, C., 1973, Somatic mutation and the origin of antibody diversity. Clonal variability of the Ig produced by MOPC 21 in culture, Eur. J. Immunol. 3:135.CrossRefGoogle Scholar
  17. Dewey, M. M., Davis, P. K., Blasie, J. K., and Barr, L., 1969, Localization of rhodopsin antibody in the retina of the frog, J. Mol. Biol. 39:395.PubMedCrossRefGoogle Scholar
  18. Eakin, R. M., and Westfall, J. H., 1959, Fine structure of the retina in the reptilian third eye, J. Biophys. Biochem. Cytol. 6:133.PubMedCrossRefGoogle Scholar
  19. Fazekas de St. Groth, S., and Scheidegger, D., 1980, Production of monoclonal antibodies: Strategy and tactics, J. Immunol. Methods 35:1.Google Scholar
  20. Fekete, D. M., and Barnstable, C. J., 1981, Ultrastructural localisation of rat photoreceptor membrane antigens, submitted for publication.Google Scholar
  21. Galfrè, G., Howe, S. C., Milstein, C., Butcher, G. W., Howard, J. C., 1977, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature (London) 266:550.CrossRefGoogle Scholar
  22. Hinds, J. W., and Hinds, P. L., 1979, Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: An electron microscopic, serial section analysis, J. Comp. Neurol. 187:495.PubMedCrossRefGoogle Scholar
  23. Huttner, W., and Greengard, P., 1979, Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium, Proc. Natl. Acad. Sci. U.S.A. 76:5402.PubMedCrossRefGoogle Scholar
  24. Iversen, L. L., and Kelly, J. S., 1975, Uptake and metabolism of 7-aminobutyric acid by neurones and glial cells, Biochem. Pharmacol. 24:933.PubMedCrossRefGoogle Scholar
  25. Kearney, J. F., Radbruch, A., Liesegang, B., and Rajewski, K., 1979, A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines, J. Immunol. 123:1548.PubMedGoogle Scholar
  26. Kidokoro, Y., Heinemann, S., Schubert, D., Brandt, B. L., and Klier, F. G., 1975, Synapse formation and neurotrophic effects on muscle cell lines, Cold Spring Harbor Symp. Quant. Biol. 40:373.CrossRefGoogle Scholar
  27. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256:495.CrossRefGoogle Scholar
  28. Kuffler, S. W., Nicholls, J. G., and Orkand, R. K., 1966, Physiological properties of glial cells in the central nervous system of amphibia, J. Neurophysiol. 29:766.Google Scholar
  29. LaVail, M. M., 1976, Survival of some photoreceptor cells in albino rats following long term exposure to continuous light, Invest. Ophthalmol. 15:64.Google Scholar
  30. Letarte-Muirhead, M., Barclay, A. N., and Williams, A. F., 1975, Purification of the Thy-1 molecule, a major cell-surface glycoprotein of rat thymocytes, Biochem. J. 151:685.PubMedGoogle Scholar
  31. Lisak, R. P., Falk, G. A., Heinze, R. G., Kies, M. W., Alvord, E. C., 1970, Dissociation of antibody production from disease suppression in the inhibition of allergic encephalomyelites by myelin basic protein, J. Immunol. 104:1435.PubMedGoogle Scholar
  32. Mendell, J. R., and Whittaker, J. N., 1978, Immunochemical localisation studies of myelin basic protein, J. Cell Biol. 76:502.PubMedCrossRefGoogle Scholar
  33. Miller, R. E., and Dowling, J. E., 1970, Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram, J. Neurophysiol. 33:323.PubMedGoogle Scholar
  34. Minna, J., Glazer, D., and Nirenberg, M., 1972, Genetic dissection of neural properties using somatic cell hybrids, Nature (London) New Biol. 235:225.Google Scholar
  35. Morris, R. J., and Williams, A. F., 1975, Antigens on mouse and rat lymphocytes recognised by rabbit antiserum against rat brain: The quantitative analysis of a xenogeneic antiserum, Eur. J. Immunol. 5:274.PubMedCrossRefGoogle Scholar
  36. Moscona, A. A., and Piddington, R., 1966, Stimulation by hydrocortisone of premature changes in the developmental pattern of glutamine synthetase in embryonic retina, Biochem. Biophys. Acta 121:409.PubMedCrossRefGoogle Scholar
  37. Nilsson, S. E. G., 1964, Receptor cell outer segment development and ultrastructure of the disk membranes in the retina of the tadpole (Rana pipiens), J. Ultrastruct. Res. 11:581.PubMedCrossRefGoogle Scholar
  38. Papermaster, D. S., Schneider, B. G., Zorn, M. A., and Kraekenbull, J. P., 1978, Immu-nocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks, J. Cell Biol. 78:415.PubMedCrossRefGoogle Scholar
  39. Parham, P., Barnstable, C. J., and Bodmer, W. F., 1979, Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C antigens, J. Immunol. 132:342.Google Scholar
  40. Peters, A., Palay, S. L., and Webster, H. de F., 1976, Fine Structure of the Nervous System, Saunders, Philadelphia.Google Scholar
  41. Raff, M. C., Fields, K. L., Hakomori, S., Mirsky, R., Pruss, R. M., and Winter, J., 1979, Cell-typed-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174:283.PubMedCrossRefGoogle Scholar
  42. Rutishauser, U., Thiery, J. P., Brackenbury, R., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. III. Relationship of the surface molecule CAM to cell adhesion and development of histaotynic patterns, J. Cell Biol. 79:371.PubMedCrossRefGoogle Scholar
  43. Sarthy, P. V., and Lam, D. M. K., 1979, Isolated cells from a mammalian retina, Brain Res. 176:208.PubMedCrossRefGoogle Scholar
  44. Schachner, M., 1974, NS-1 (Nervous System Antigen-1), a glial-cell specific antigenic component of the surface membrane, Proc. Natl. Acad. Sci. U.S.A. 71:1795.PubMedCrossRefGoogle Scholar
  45. Schechter, I., 1974, Use of antibodies for the isolation of biologically pure messenger ribonucleic acid from fully functional eukaryotic cells, Biochemistry 13:1875.PubMedCrossRefGoogle Scholar
  46. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L., 1974, Clonal cell lines from the rat central nervous system, Nature (London) 249:224.CrossRefGoogle Scholar
  47. Segal, G. P., and Klinman, N. R., 1976, Defining the heterogeneity of anti-tumor antibody responses, J. Immunol. 116:1539.PubMedGoogle Scholar
  48. Shapiro, D. J., Taylor, J. M., McKnight, G. S., Palacios, R., Gonzalez, C., Kiely, M. L., and Schimke, R. T., 1974, Isolation of hen oviduct ovalbumin and rat liver albumin polysomes by indirect immunoprecipitation, J. Biol. Chem. 249:3665.PubMedGoogle Scholar
  49. Snell, G. D., and Cherry, M., 1972, Loci determining cell surface alloantigens, in RNA Viruses and Host Genome in Oncogenesis (P. Emmelot, and P. Bentvelzen, eds.), North-Holland, Amsterdam. pp. 221–228.Google Scholar
  50. Sperry, R. W., 1950, Neuronal specificity, in: Genetic Neurology (P. Weiss, ed.), University of Chicago Press, Chicago.Google Scholar
  51. Stallcup, W. B., and Cohn, M., 1976, Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system, Exp. Cell Res. 98:285.PubMedCrossRefGoogle Scholar
  52. Sternberger, L. A., 1979, Immunochemistry, 2nd ed., Wiley, New York.Google Scholar
  53. Trisler, G. D., Donlon, M. A., Shain, W. G., and Coon, H. G., 1979, Recognition of antigenic differences among neurons using antiserums to clonal neural retina hybrid cells Fed. Proc. 38:2368.PubMedGoogle Scholar
  54. Uga, S., and Smelser, G. K., 1973a, Electron microscopic study of the development of retinal Müllerian cells, Invest. Ophthalmol. 12:295.PubMedGoogle Scholar
  55. Uga, S., and Smelser, G. K., 1973b, Comparative study of the fine structure of retinal Müller cells in various vertebrates, Invest. Ophthalmol. 12:636.Google Scholar
  56. van de Kamer, J. C., 1965, Histological structure and cytology of the pineal complex in fishes, amphibians and reptiles, Progr. Brain Res. 10:30.CrossRefGoogle Scholar
  57. Wacker, W. B., Donoso, L. A., Kalsow, C. M., Yankeelov, J. A., and Organisciak, D. T., 1977, Experimental allergic uveitis. Isolation characterisation and localisation of a soluble uveitopathogenic antigen from bovine retina, J. Immunol. 119:1949.PubMedGoogle Scholar
  58. Williams, A. F., 1977, Differentiation antigens of the lymphocyte cell surface, in: Contemp. Top. Mol. Immunol. 6:93.Google Scholar
  59. Williams, A. F., Galfrè, G., and Milstein, C., 1977, Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: Differentiation antigens of rat lymphocytes, Cell 12:663.PubMedCrossRefGoogle Scholar
  60. Young, R. W., 1968, Passage of newly formed protein through the connecting cilium of retinal rods in the frog, J. Ultrastruct. Res. 23:462.PubMedCrossRefGoogle Scholar
  61. Yuan, D., Vitetta, E. S., and Schachner, M., 1977, Partial characterization of nervous system-specific cell surface antigen(s) NS-2, J. Immunol. 118:551.PubMedGoogle Scholar
  62. Zimmerman, B. L., and Tso, M. O. M., 1975, Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat, J. Cell Biol. 66:60.PubMedCrossRefGoogle Scholar
  63. Zipser, B., and McKay, R., 1981, Monoclonal antibodies distinguish identifiable neurones in the leech, Nature (London) 289:549.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Colin J. Barnstable
    • 1
  1. 1.Department of NeurobiologyHarvard Medical SchoolBostonUSA

Personalised recommendations