The Use of Antibodies to Define and Study Major Cell Types in the Central and Peripheral Nervous System

  • Rhona Mirsky
Part of the Current Topics in Neurobiology book series (CTNB)


This chapter outlines research done in the MRC Neuroimmunology Project, Zoology Department, University College London, over the last 10 years. The variety of problems studied is large, but underlying the approach to all of them has been the premise that antibodies can be valuable tools for studying the nervous system.


Glial Fibrillary Acid Protein Sciatic Nerve Schwann Cell Ependymal Cell Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akeson, R., and Seeger, R. C., 1977, Interspecies neural membrane antigen on cultured human and murine neuroblastoma cells, J. Immunol. 118:1995.Google Scholar
  2. Abney, E. R., Bartlett, P. P., and Raff, M. C., 1981, Astrocytes, ependymal cells and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol. 83:301.PubMedCrossRefGoogle Scholar
  3. Altman, J., 1972, Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer, J. Comp. Neurol. 145:465.PubMedCrossRefGoogle Scholar
  4. Antanitus, D. S., Choi, B. H., Lapham, L. W., 1975, Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein, Brain Res. 89:363.PubMedCrossRefGoogle Scholar
  5. Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in the rat retina, Nature (London) 286:231.CrossRefGoogle Scholar
  6. Bartlett, P. F., Noble, M. D., Pruss, R. M., Raff, M. C., Rattray, S., and Williams, C. A., 1981, Rat neural antigen-2 (Ran-2): A cell surface antigen on astrocytes, ependymal cells, Müller cells and leptomeninges defined by a monoclonal antibody, Brain Res. 204:339.PubMedCrossRefGoogle Scholar
  7. Bevan, S., Kullberg, R. W., and Heinemann, S. F., 1977, Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture, Nature (London) 267:263.CrossRefGoogle Scholar
  8. Bignami, A., and Dahl, D., 1973, Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts in the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes, Brain Res. 49:393.PubMedCrossRefGoogle Scholar
  9. Bignami, A., and Dahl, D., 1974, Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to glial fibrillary acidic protein, J. Comp. Neurol. 153:27.PubMedCrossRefGoogle Scholar
  10. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43:429.PubMedCrossRefGoogle Scholar
  11. Bock, E., Moller, M., Nissen, C., and Sensenbrenner, M., 1977, Glial fibrillary acidic protein in primary astroglial cultures derived from newborn rat brain, FEBS Lett. 83:207.PubMedCrossRefGoogle Scholar
  12. Brockes, J. P., and Raff, M. C., 1979, Studies on cultured rat Schwann cells. II. Comparison with a rat Schwann cell line, In vitro, 15:772.PubMedCrossRefGoogle Scholar
  13. Brockes, J. P., Fields, K. L., and Raff, M. C., 1977, A surface antigenic marker for rat Schwann cells, Nature (London) 266:364.CrossRefGoogle Scholar
  14. Brockes, J. P., Fields, K. L., and Raff, M. C., 1979, Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve, Brain Res. 165:105.PubMedCrossRefGoogle Scholar
  15. Brockes, J. P., Raff, M. C., Nishiguchi, D. J., and Winter, J., 1980a, Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins, J. Neurocytol. 9:67.Google Scholar
  16. Brockes, J. P., Lemke, G. E., and Balzer, D. R., Jr., 1980b, Purification and preliminary characterization of a glial growth factor from the bovine pituitary, J. Biol. Chem. 255:8374.Google Scholar
  17. Burridge, K., 1978, Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels, in: Methods in Enzymology, vol. 50 (S. P. Colowick and N. O. Kaplan, eds.), pp. 54–64, Academic Press, New York.Google Scholar
  18. Cantor, H., and Boyse, E., 1977, Regulation of the immune response by T-cell subclasses, Contemp. Top. Immunobiol. 7:47.PubMedCrossRefGoogle Scholar
  19. Cohen, J., and Selvendran, S. Y., 1981, A neurone-specific cell-surface antigen in the central nervous system not shared by peripheral neurones, Nature (London) 291:421.CrossRefGoogle Scholar
  20. Cook, R. D., and Burnstock, G., 1976, The ultrastructure of Auerbachs plexus in the guinea-pig. II. Non-neuronal elements, J. Neurocytol. 5:195.PubMedCrossRefGoogle Scholar
  21. Cuello, A. C., Galfre, G., and Milstein, C., 1979, Detection of substance P in the central nervous system by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A. 76:3532.PubMedCrossRefGoogle Scholar
  22. Currie, D. N., Fields, K. L., and Dutton, G. R., 1977, GABA autoradiography and Thy 1.1 immunofluorescent properties of primary cell cultures of postnatal rat cerebellum, Proc. Int. Soc. Neurochem. 6:635.Google Scholar
  23. Dahl, D., and Bignami, A., 1976, Immunogenic properties of the glial fibrillary acidic protein, Brain Res. 116:150.PubMedCrossRefGoogle Scholar
  24. Dimpfel, W., Neale, J. H., and Habermann, E., 1975, 125I-labelled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 290:329.CrossRefGoogle Scholar
  25. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. U.S.A. 76:4913.PubMedCrossRefGoogle Scholar
  26. Eng, L. F., Vanderhaegen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28:351.PubMedCrossRefGoogle Scholar
  27. Fields, K. L., Gosling, C., Megson, M., and Stern, P. L., 1975, New cell surface antigens in rat defined by tumors of the nervous system, Proc. Natl. Acad. Sci. U.S.A. 72:1286.CrossRefGoogle Scholar
  28. Fields, K. L., Brockes, J. P., Mirsky, R., and Wendon, L. M. B., 1978, Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture, Cell 14:43.PubMedCrossRefGoogle Scholar
  29. Fleischhauer, K., 1972, Ependymal and sub-ependymal layer, in: The Structure and Function of Nervous Tissue, vol. 6 (G. H. Bourne, ed.), pp. 1–46, Academic Press, New York.Google Scholar
  30. Gabella, G., 1972, Fine structure of the myenteric plexus in the guinea-pig ileum, J. Anat. 111:69.PubMedGoogle Scholar
  31. Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W., and Howard, J. C., 1977, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature (London) 266:550.CrossRefGoogle Scholar
  32. Gilbert, D. S., Newby, B. J., and Anderton, B. H., 1975, Neurofilament disguise, destruction and discipline, Nature (London) 256:586.CrossRefGoogle Scholar
  33. Greene, L. A., and Tischler, A. S., 1976, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 73:2424.PubMedCrossRefGoogle Scholar
  34. Heinemann, S., Bevan, S., Kuliberg, R., Lindstrom, J., and Rice, J., 1977, Modulation of acetylcholine receptor by antibody against the receptor, Proc. Natl. Acad. Sci. U.S.A. 74:3090.PubMedCrossRefGoogle Scholar
  35. Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66:351.PubMedCrossRefGoogle Scholar
  36. Hynes, R. O., 1973, Alteration of cell-surface proteins by viral transformation and proteolysis, Proc. Natl. Acad. Sci. U.S.A. 70:3170.PubMedCrossRefGoogle Scholar
  37. Jessen, K. R., and Mirsky, R., 1980, Glial cells in the enteric nervous system contain glial fibrillary acidic protein, Nature (London) 286:736.CrossRefGoogle Scholar
  38. Kennedy, P. G. E., Lisak, R. P., and Raff, M. C., 1980, Cell type-specific markers for human glial and neuronal cells in culture, Lab. Invest. 43:342.PubMedGoogle Scholar
  39. Kennett, R. H., and Gilbert, F., 1979, Hybrid myelomas producing antibodies against a human neuroblastoma antigen present on fetal brain, Science 203:1120.PubMedCrossRefGoogle Scholar
  40. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256:495.CrossRefGoogle Scholar
  41. Kozak, L. P., Dahl, D., and Bignami, A., 1978, Glial fibrillary acidic protein in reaggregating and monolayer cultures of fetal mouse cerebral hemispheres, Brain Res. 150:631.PubMedCrossRefGoogle Scholar
  42. Lagenaur, C., Sommer, I., and Schachner, M., 1980, Subclass of astroglia in mouse cerebellum recognized by monoclonal antibody, Dev. Biol. 79:367.PubMedCrossRefGoogle Scholar
  43. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London) 283:249.CrossRefGoogle Scholar
  44. Ledbetter, J. A., and Herzenberg, L. A., 1979, Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens, Immunological Rev. 47:63.CrossRefGoogle Scholar
  45. McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligoden-droglial cultures from rat cerebral tissue, J. Cell Biol. 85:890.PubMedCrossRefGoogle Scholar
  46. Mirsky, R., and Thompson, E. J., 1975, Thy-1 (theta) antigen on the surface of morphologically distinct brain cell types, Cell 4:95.PubMedCrossRefGoogle Scholar
  47. Mirsky, R, Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurones in culture, Brain Res. 148:251.PubMedCrossRefGoogle Scholar
  48. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84:483.PubMedCrossRefGoogle Scholar
  49. Nelson, P., Clifford, C., and Nirenberg, M., 1976, Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells, Proc. Natl. Acad. Sci. U.S.A. 73:123.PubMedCrossRefGoogle Scholar
  50. Osborn, M., Franke, W. W., and Weber, K., 1980, Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double immunofluorescence microscopy, Exp. Cell Res. 125:37.PubMedCrossRefGoogle Scholar
  51. Parkhouse, R. M. E., and Cooper, M. D., 1977, A model for the differentiation of B lymphocytes with implications for the biological role of IgD, Immunol. Rev. 37:105.PubMedCrossRefGoogle Scholar
  52. Pruss, R., 1979, Thy-1 antigen on astrocytes in long-term cultures of rat central nervous system, Nature (London) 280:688.CrossRefGoogle Scholar
  53. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell (December issue).Google Scholar
  54. Raff, M. C., 1970, Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence, Immunology 19:637.PubMedGoogle Scholar
  55. Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S., and Kennedy, M. C., 1978a, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature (London) 274:813.Google Scholar
  56. Raff, M. C., Abney, E. R., Hornby-Smith, A., and Brockes, J. P., 1978b, Schwann cell growth factors, Cell 15:813.PubMedCrossRefGoogle Scholar
  57. Raff, M. C., Fields, K. L., Hakomori, S.-I., Mirsky, R., Pruss, R. M., and Winter, J., 1979, Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174:283.PubMedCrossRefGoogle Scholar
  58. Reif, A. E., and Allen, J. M. V., 1964, The AKR thymic antigen and its distribution in leukaemias and nervous tissues, J. Exp. Med. 120:413.PubMedCrossRefGoogle Scholar
  59. Roslansky, P. F., Cornell-Bell, A., Rice, R. V., and Adelman, W. J., 1980, Polypeptide composition of squid neurofilaments, Proc. Natl. Acad. Sci. U.S.A. 77:404.PubMedCrossRefGoogle Scholar
  60. Schachner, M., Ruberg, M. Z., and Carnow, T. B., 1976, Histological localization of nervous system antigens in the cerebellum by immunoperoxidase labelling, Brain Res. Bull. 1:367.PubMedCrossRefGoogle Scholar
  61. Schachner, M., Hedley-Whyte, E. T., Hsu, D. W., Schoonmaker, G., and Bignami, A., 1977, Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labelling, J. Cell Biol. 75:67.PubMedCrossRefGoogle Scholar
  62. Schachner, M., Schoonmaker, G., and Hynes, R. O., 1978, Cellular and subcellular localisation of LETS protein in the nervous system, Brain Res. 158:149.PubMedCrossRefGoogle Scholar
  63. Schmechel, D. E., and Rakic, P., 1979a, A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes, Anat. Embryol. 156:115.PubMedCrossRefGoogle Scholar
  64. Schmechel, D. E., and Rakic, P., 1979b, Arrested proliferation of radial glial cells during midgestation in rhesus monkey, Nature 277:303.PubMedCrossRefGoogle Scholar
  65. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., and Kimes, B., 1974, Clonal cell lines from the rat central nervous system, Nature (London) 249:224.CrossRefGoogle Scholar
  66. Shantha, T. R., and Bourne, G. H., 1968, The perineural epithelium—a new concept, in: The Structure and Function of Nervous Tissue, vol. 1 (G. H. Bourne, ed.), pp. 380–459, Academic Press, New York.Google Scholar
  67. Skoff, R. P., Price, D. L., and Stocks, A., 1976, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin, J. Comp. Neurol. 169:313.PubMedCrossRefGoogle Scholar
  68. Stallcup, W. B., and Cohn, M., 1976, Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system, Exp. Cell Res. 98:285.PubMedCrossRefGoogle Scholar
  69. Steinert, P. M., Idler, W. W., and Goldman, R. D., 1980, Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures, Proc. Natl. Acad. Sci. U.S.A. 77:4534.PubMedCrossRefGoogle Scholar
  70. Stern, P. L., 1973, Theta alloantigen on mouse and rat fibroblasts, Nature (London) New Biol. 246:76.Google Scholar
  71. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978a, Immunochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat, J. Neurocytol. 7:251.PubMedCrossRefGoogle Scholar
  72. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978b, Myelin basic protein demonstrated immunochemically in Oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 75:2521.PubMedCrossRefGoogle Scholar
  73. Vaheri, A., Ruoslahti, E., Westermark, B., and Ponten, J., 1976, A common cell-type-specific surface antigen in cultured human glial cells and fibroblasts: Loss in malignant cells, J. Exp. Med. 143:64.PubMedCrossRefGoogle Scholar
  74. Van Heyningen, W. E., 1963, The fixation of tetanus toxin, strychnine, serotonin and other substances by ganglioside, J. Gen. Microbiol. 31:375.CrossRefGoogle Scholar
  75. Vulliamy, T., and Messenger, E. A., 1981, Tetanus toxin: A marker of Amphibian neuronal differentiation in vitro, Neurosa. Lett. 22:87.CrossRefGoogle Scholar
  76. Vulliamy, T., Rattray, S., and Mirsky, R., 1981, Sensory and autonomic peripheral neurones express a cell surface antigen not expressed by central neurones, Nature (London) 291:418.CrossRefGoogle Scholar
  77. Wang, C., Asai, D. J., and Lazarides, E., 1980, The 68,000-dalton neurofilament-associated polypeptide is a component of non-neuronal cells and of skeletal myofibrils, Proc. Natl. Acad. Sci. U.S.A. 77:1541.PubMedCrossRefGoogle Scholar
  78. Wartiovaara, J., Linder, E., Ruoslahti, E., and Vaheri, A., 1974, Distribution of fibroblast surface antigen, J. Exp. Med. 140:1522.PubMedCrossRefGoogle Scholar
  79. Webster, H. de F., 1971, The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves, J. Cell Biol. 48:348.PubMedCrossRefGoogle Scholar
  80. Whittaker, V. P., and Barker, L. A., 1972, The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles, in: Methods of Neurochemistry, vol. 2 (R. Fried, ed.), pp. 1–52, Marcel Dekker, New York.Google Scholar
  81. Winter, J., Mirsky, R., and Kadlubowski, M., 1982, Immunocytochemical study of the appearance of P2 in developing rat peripheral nerve: comparison with other myelin components, J. Neurocytol., in press.Google Scholar
  82. Wolpert, L., 1969, Positional information and the spatial pattern of differentiation, J. Theor. Biol. 25:1.PubMedCrossRefGoogle Scholar
  83. Wood, P., 1976, Separation of functional Schwann cells and neurones from normal peripheral nerve tissue, Brain Res. 115:361.PubMedCrossRefGoogle Scholar
  84. Yen, S.-H., and Fields, K. L., 1981, Antibodies to neurofilament, glial filament and fibroblast intermediate filament proteins bind to different cell types in the nervous system, J. Cell Biol. 88:115.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Rhona Mirsky
    • 1
  1. 1.MRC Neuroimmunology Group, Department of ZoologyUniversity College LondonLondonEngland

Personalised recommendations