Analysis of Functional Cell Sets in the Immune System

  • Linda L. Y. Chun
  • Harvey Cantor
Part of the Current Topics in Neurobiology book series (CTNB)


In the immune system it has been possible to distinguish subpopulations of cells on the basis of the surface antigens they express. The genetic program of each set of cells combines information which codes for a unique pattern of cell surface glycoproteins that is invariably associated with a particular immunologic function. More recently, it has been possible to identify the functional role of one of these surface glycoproteins. The purpose of this article is to review the experimental approaches which have contributed to the definition of functional cell sets in the immune system in the hope that similar strategies may be useful in the dissection of functionally relevant cell sets in the nervous system.


Genetic Program Cell Surface Glycoprotein Kill Target Cell Lymphocyte Clone Syngeneic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7:46.PubMedCrossRefGoogle Scholar
  2. Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in the rat retina, Nature (London) 286:231.CrossRefGoogle Scholar
  3. Boyse, E. A., Miyazawa, M., Aoki, T., and Old, L. J., 1968, Ly-A and Ly-B: Two systems of lymphocyte isoantigens in the mouse, Proc. R. Soc. London Ser. B 170:175.CrossRefGoogle Scholar
  4. Boyse, E. A., Itakura, K., Stockert, E., Iritani, C. A., and Miura, M., 1971, Ly-C: A third locus specifying alloantigens expressed only on thymocytes and lymphocytes, Transplantation 11:351.PubMedCrossRefGoogle Scholar
  5. Cantor, H., and Asofsky, R., 1972, Synergy among lymphoid cells mediating the graft-versus-host response. III. Evidence for interaction between two types of thymus-derived cells, J. Exp. Med. 135:764.PubMedCrossRefGoogle Scholar
  6. Cantor, H., and Boyse, E. A., 1975a, Functional subclasses of T lymphocytes bearing different Ly antigens. I. Generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen, J. Exp. Med. 141:1376.Google Scholar
  7. Cantor, H., and Boyse, E. A., 1975b, Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity, J. Exp. Med. 141:1390.Google Scholar
  8. Cantor, H., Shen, F. W., and Boyse, E. A., 1976, Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: After immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses, J. Exp. Med. 143:1391.PubMedCrossRefGoogle Scholar
  9. Cantor, H., Hugenberger, J., McVay-Boudreau, L., Eardley, D. D., Kemp, J., Shen, F. W., and Gershon, R. K., 1978, Immunoregulatory circuits among T-cell sets. Identification of a subpopulation of T-helper cells that induces feedback inhibition, J. Exp. Med. 148:871.PubMedCrossRefGoogle Scholar
  10. Claman, H. N., Chaperon, E. A., and Triplett, R. F., 1966, Thymus-marrow cell combinations. Synergism in antibody production, Proc. Soc. Exp. Biol. Med. 122:1167.PubMedGoogle Scholar
  11. Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential, J. Physiol. 130:326.PubMedGoogle Scholar
  12. Dialynas, D. P., Loken, M. R., Glasebrook, A. L., and Fitch, F. W., 1981, Lyt-2-/Lyt-3-variants of a cloned cytolytic T cell line lack an antigen receptor functional in cytolysis, J. Exp. Med. 153:595.PubMedCrossRefGoogle Scholar
  13. Durda, P. J., Shapiro, C., and Gottlieb, P. D., 1978, Partial molecular characterization of the Ly-1 alloantigen on mouse thymocytes, J. Immunol. 120:53.PubMedGoogle Scholar
  14. Eardley, D. D., Hugenberger, J., McVay-Boudreau, L., Shen, F. W., Gershon, R. K., and Cantor, H., 1978, Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition, J. Exp. Med. 147:1106.PubMedCrossRefGoogle Scholar
  15. Edelman, G. M., 1971, Antibody structure and molecular immunology, Ann. N.Y. Acad. Sci. 190:5.PubMedCrossRefGoogle Scholar
  16. Finberg, R., Burakoff, S. J., Cantor, H., and Benacerraf, B., 1978, The biologic significance of alloreactivity. II. T cells stimulated by Sendai virus coated syngeneic cells specifically lyse allogeneic target cells, Proc. Natl. Acad. Sci. U.S.A. 75:5145.PubMedCrossRefGoogle Scholar
  17. Fresno, M., McVay-Boudreau, L., Nabel, G., and Cantor, H., 1981a, Antigen-specific T lymphocyte clones. II. Purification and biological characterization of an antigen-specific suppressive protein synthesized by cloned T cells, J. Exp. Med. 153:1260.PubMedCrossRefGoogle Scholar
  18. Fresno, M., Nabel, G., McVay-Boudreau, L., Furthmayer, H., and Cantor, H., 1981b, Antigen-specific T lymphocyte clones. I. Characterization of a T lymphocyte clone expressing antigen-specific suppressive activity, J. Exp. Med. 153:1246.Google Scholar
  19. Fresno, M., McVay-Boudreau, L., and Cantor, H., 1982, Antigen-specific T lymphocyte clones. III. Papain splits purified T-suppressor molecules into two functional domains, J. Exp. Med., in press.Google Scholar
  20. Gershon, R. K., 1974, T-cell control of antibody production, Contemp. Top. Immunobiol 3:1.PubMedCrossRefGoogle Scholar
  21. Glasebrook, A. L., and Fitch, F. W., 1980, Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines, J. Exp. Med. 151:876.PubMedCrossRefGoogle Scholar
  22. Hollander, N., Pillemer, E., and Weissman, I. L., 1980, Blocking effect of Lyt-2 antibodies on T cell function, J. Exp. Med 152:674.PubMedCrossRefGoogle Scholar
  23. Hollander, N., Pillemer, E., and Weissman, I. L., 1981, Effects of Lyt antibodies on T-cell functions: Augmentation by anti-Lyt-1 as opposed to inhibition by anti-Lyt-2, Proc. Natl. Acad. Sci. U.S.A. 78:1148.PubMedCrossRefGoogle Scholar
  24. Huber, B., Devinsky, O., Gershon, R. K., and Cantor, H., 1976, Cell-mediated immunity: Delayed type hypersensitivity and cytotoxic responses are mediated by different T cell subclasses, J. Exp. Med. 143:1534.PubMedCrossRefGoogle Scholar
  25. Itakura, K., Hutton, J. J., Boyse, E. A., and Old, L. J., 1972, Genetic linkage relationships of loci specifying differentiation alloantigens in the mouse, Transplantation 13:239.PubMedCrossRefGoogle Scholar
  26. Jandinski, J., Cantor, H., Tadakuma, T., Peavy, D. L., and Pierce, C. W., 1976, Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: Suppressor and helper activities are inherent properties of distinct T cell subclasses, J. Exp. Med. 143:1382.PubMedCrossRefGoogle Scholar
  27. Ledbetter, J. A., and Herzenberg, L. A., 1979, Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens, Immunol Rev. 47:63.PubMedCrossRefGoogle Scholar
  28. Ledbetter, J. A., Seaman, W. E., Tsu, T. T., and Herzenberg, L., 1981, Lyt-2 and Lyt-3 antigens are on two different Polypeptide subunits linked by disulfide bonds, J. Exp. Med. 153:1503.PubMedCrossRefGoogle Scholar
  29. Letinsky, M. S., Fischbeck, K. H., and McMahan, U. J., 1976, Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush, J. Neurophysiol. 5:691.Google Scholar
  30. Marshall, L. M., Sanes, J. R., and McMahan, U. J., 1977, Reinnervation of original synaptic sites on muscle fiber membrane after disruption of the muscle cells, Proc. Natl. Acad. Sci. U.S.A. 74:3073.PubMedCrossRefGoogle Scholar
  31. Miller, J. F. A. P., and Mitchell, G. F., 1968, Immunological activity of thymus and thoracic duct lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 59:296.PubMedCrossRefGoogle Scholar
  32. Mozes, E., and Haimovich, J., 1979, Antigen-specific T cell helper factor crossreacts idiotypically with antibodies of the same specificity, Nature (London) 278:56.CrossRefGoogle Scholar
  33. Murphy, D. B., 1978, The I-J subregion of the murine H-2 gene complex, Springer Semin. Immunopathol. 1:111.CrossRefGoogle Scholar
  34. Nabel, G., Fresno, M., Chessman, A., and Cantor, H., 1981, Use of cloned populations of mouse lymphocytes to analyze cellular differentiation, Cell 23:19.PubMedCrossRefGoogle Scholar
  35. Nakayama, E., Shiku, H., Stockert, E., Oettgen, H. F., and Old, L. J., 1979, Cytotoxic T cells: Lyt phenotype and blocking of killing activity by Lyt antisera, Proc. Natl. Acad. Sci. U.S.A. 76:1977.PubMedCrossRefGoogle Scholar
  36. Natvig, J. B., and Kunkel, H. G., 1973, Human Immunoglobulins: Classes, subclasses, genetic variants, and idiotypes, Adv. Immunol. 16:1.PubMedCrossRefGoogle Scholar
  37. Purves, D., Thompson, W., and Yip, J. W., 1981, Reinnervation of ganglia transplanted to the neck from different levels of the guinea-pig sympathetic chain, J. Physiol. 313:49.PubMedGoogle Scholar
  38. Reilly, E. B., Auditore-Hargreaves, K., Hämmerling, U., and Gottlieb, P. D., 1980, Lyt-2 and Lyt-3 alloantigens: Precipitation with monoclonal and conventional antibodies and analysis on one- and two-dimensional Polyacrylamide gels, J. Immunol. 125:2245.PubMedGoogle Scholar
  39. Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1978, Reinnervation of muscle fiber basal laminar after removal of myofibers. Differentiation of regenerating axons at original synaptic sites, J. Cell. Biol. 78:176.PubMedCrossRefGoogle Scholar
  40. Sarmiento, M., Glasebrook, A. L., and Fitch, F. W., 1980, IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement, J. Immunol. 125:2665.PubMedGoogle Scholar
  41. Shen, F. W., Boyse, E. A., and Cantor, H., 1975, Preparation and use of Ly antisera, Immunogenetics 2:591.CrossRefGoogle Scholar
  42. Shinohara, N., and Sachs, D. H., 1979, Mouse alloantibodies capable of blocking cytotoxic T-cell function. I. Relationship between the antigen reactive with blocking antibodies and the Lyt 2 locus, J. Exp. Med. 150:432.PubMedCrossRefGoogle Scholar
  43. Sieber-Blum, M., and Cohen, A. M., 1980, Clonal analysis of quail neural crest cells. They are pluripotent and differentiate in vitro in the absence of noncrest cells, Dev. Biol. 80:96.PubMedCrossRefGoogle Scholar
  44. Takemori, T., and Tada, T., 1975, Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterizations. J. Exp. Med. 142:1241.PubMedCrossRefGoogle Scholar
  45. Trisler, C. D., Schneider, M. D. and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Natl. Acad. Sci. U.S.A. 78:2145.PubMedCrossRefGoogle Scholar
  46. Zipser, B., and MacKay, R., 1981, Monoclonal antibodies distinguish identifiable neurones in the leech, Nature (London) 289:549.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Linda L. Y. Chun
    • 1
  • Harvey Cantor
    • 1
  1. 1.Department of PathologyHarvard Medical School, and Sidney Farber Cancer InstituteBostonUSA

Personalised recommendations