Monoclonal Antibodies to Skeletal Muscle Cell Surface

  • Douglas M. Fambrough
  • Ellen K. Bayne
  • John M. Gardner
  • M. John Anderson
  • Eric Wakshull
  • Richard L. Rotundo
Part of the Current Topics in Neurobiology book series (CTNB)


About half of the mass of a vertebrate’s body is muscle tissue, of which the principal cell is the muscle fiber: an extremely long, multinucleate cell which has a regionally specialized surface for interaction with tendons, for propagation of action potentials, and for reception of chemical signals from motor neurons. The intimate relation between motor neuron and muscle fiber has been of special importance to neurobiologists. Studies of the neuromuscular junction have provided fundamental information about synaptic communication. Furthermore, evidence of long-term trophic interactions between muscle fibers and motor neurons has been important for the development of ideas about the plasticity and stability of neuronal connections.


Acetylcholine Receptor Basal Lamina Neuromuscular Junction Plasma Membrane Protein Myogenic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alitalo, K., Kurkinen, M., Vaheri, A., Virtanen, I., Rohde, H., and Timpl, R., 1980, Basal lamina glycoproteins are produced by neuroblastoma cells, Nature (London) 287:465.CrossRefGoogle Scholar
  2. Appel, S. H., Anwyl, R., McAdams, M. W., and Elias, S., 1977, Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins, Proc. Natl. Acad. Sci. U.S.A. 74:2130.PubMedCrossRefGoogle Scholar
  3. Berg, D. K., and Hall, Z. W., 1975, Loss of α-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm in vivo and in organ culture, J. Physiol. (London) 252:771.Google Scholar
  4. Burden, S., 1977, Development of the neuromuscular junction in the chick embryo: The number, distribution, and stability of acetylcholine receptors, Dev. Biol. 57:317.PubMedCrossRefGoogle Scholar
  5. Burden, S. J., Sargent, P. B., and McMahan, U. J., 1979, Acetylcholine receptors in regenerating muscle accumulate at original sites in the absence of the nerve, J. Cell Biol. 82:412.PubMedCrossRefGoogle Scholar
  6. Chang, C. C, and Huang, M. C, 1975, Turnover of junctional and extrajunctional acetylcholine receptors of rat diaphragm, Nature (London) 253:643.CrossRefGoogle Scholar
  7. Chen, L., 1977, Alteration in cell surface LETS protein during myogenesis, Cell 10:393.PubMedCrossRefGoogle Scholar
  8. Devreotes, P. N., and Fambrough, D. M., 1976a, Synthesis of the acetylcholine receptor by cultured chick myotubes and denervated mouse extensor digitorum longus muscles, Proc. Natl. Acad. Sci. U.S.A. 73:161.PubMedCrossRefGoogle Scholar
  9. Devreotes, P. N., and Fambrough, D. M., 1976b, Turnover of acetylcholine receptors in skeletal muscle, Cold Spring Harbor Symp. Quant. Biol. 40:237.PubMedCrossRefGoogle Scholar
  10. Devreotes, P. N., Gardner, J. M., and Fambrough, D. M., 1977, Kinetics of biosynthesis of acetylcholine receptor and subsequent incorporation into plasma membrane of cultured chick skeletal muscle, Cell 10:365.PubMedCrossRefGoogle Scholar
  11. Fambrough, D. M., 1979, Control of acetylcholine receptors in skeletal muscle, Physiol. Rev. 59:165.PubMedGoogle Scholar
  12. Fambrough, D. M., and Devreotes, P. N., 1978, Newly synthesized acetylcholine receptors are located in the Golgi apparatus, J. Cell Biol. 76:237.PubMedCrossRefGoogle Scholar
  13. Fambrough, D. M. and Rash, J. E., 1971, Development of acetylcholine sensitivity during myogenesis, Dev. Biol. 26:55.PubMedCrossRefGoogle Scholar
  14. Fambrough, D. M., Drachman, D. B., and Satyamurti, S., 1973, Neuromuscular junction in myasthenia gravis: Decreased acetylcholine receptors, Science 182:293.PubMedCrossRefGoogle Scholar
  15. Fambrough, D. M., Devreotes, P. N., Card, D. J., Gardner, J., and Tepperman, K., 1978, Metabolism of acetylcholine receptors in skeletal muscle, Natl. Cancer Inst. 48:277.Google Scholar
  16. Furcht, L. T., Mosher, D. F., and Wendelschafer-Crabb, G., 1978, Immunocytochemical localization of fibronectin (LETS protein) on the surface of L6 myoblasts: Light and electron microscope studies, Cell 13:263.PubMedCrossRefGoogle Scholar
  17. Galfre, G., Howe, S. C, Milstein, C, Butcher, G. W., and Howard, J. C, 1977, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature (London) 266:550.CrossRefGoogle Scholar
  18. Gardner, J. M., and Fambrough, D. M., 1979, Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence against recycling, Cell 16:661.PubMedCrossRefGoogle Scholar
  19. Hall, Z. W., 1973, Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle, J. Neurobiol. 4:343.PubMedCrossRefGoogle Scholar
  20. Hartzell, H. C, and Fambrough, D. M., 1973, Acetylcholine receptor production and incorporation into membranes of developing muscle fibers, Dev. Biol. 30:153.PubMedCrossRefGoogle Scholar
  21. Heinemann, S., Bevan, S., Kullberg, R., Lindstrom, J., and Rice, J., 1977, Modulation of acetylcholine receptor by antibody against the receptor, Proc. Natl. Acad. Sci. U.S.A. 74:3090.PubMedCrossRefGoogle Scholar
  22. Heuser, J. E. and Salpeter, S. R., 1979, Organization of acetylcholine receptors in quickfrozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane, J. Cell Biol. 82:150.PubMedCrossRefGoogle Scholar
  23. Hynes, R. O., Martin, G. S., Shearer, M., Critchley, D. R., and Epstein, G. J., 1976, Viral transformation of rat myoblasts: Effects on fusion and surface properties, Dev. Biol. 48:35.PubMedCrossRefGoogle Scholar
  24. Kao, I., and Drachman, D. B., 1977, Myasthenic immunoglobulin accelerates acetylcholine receptor degradation, Science 196:527.PubMedCrossRefGoogle Scholar
  25. Kennett, R. H., Denis, K. A., Tung, A. S., and Klinman, N. R., 1978, Hybrid plasmacytoma production: Fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells, Curr. Top. Microbiol. Immunol. 81:77.PubMedGoogle Scholar
  26. Kohler, G., and Milstein, C, 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256:495.CrossRefGoogle Scholar
  27. Krieg, T., Timpl, R., Alitalo, K., Kurkinen, M., and Vaheri, A., 1979, Type III procollagen is the major collagenous component produced by a continuous rhabdomyosarcoma cell line, FEBS Lett. 104:405.PubMedCrossRefGoogle Scholar
  28. Kurkinen, M., and Alitalo, K., 1979, Fibronectin and procollagen produced by a clonal line of Schwann cells, FEBS Lett. 102:64.PubMedCrossRefGoogle Scholar
  29. Linden, D. C, and Fambrough, D. M., 1979, Biosynthesis and degradation of acetylcholine receptors in rat skeletal muscles. Effects of electrical stimulation, Neuroscience 4:527.PubMedCrossRefGoogle Scholar
  30. Lomo, T., and Westgaard, R. H., 1975, Further studies on the control of ACh sensitivity by muscle activity in the rat, J. Physiol. (London) 252:603.Google Scholar
  31. Loring, R., and Salpeter, M. M., 1980, Denervation increases turnover of junctional acetylcholine receptors, Proc. Natl. Acad. Sci. U.S.A. 77:2293.PubMedCrossRefGoogle Scholar
  32. Massoulie, J., Bon, S., and Vigny, M., 1980, The polymorphism of cholinesterases in vertebrates, Neurochem. Int. 2:161.CrossRefGoogle Scholar
  33. McMahan, U. J., Sanes, J. R., and Marshall, L. M., 1978, Cholinesterase is associated with the basal lamina at the neuromuscular junction, Nature (London) 271:172.CrossRefGoogle Scholar
  34. Noble, M. D., Brown, T. H., and Peacock, J. H., 1978, Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures, Proc. Natl. Acad. Sci. U.S.A. 75:3488.PubMedCrossRefGoogle Scholar
  35. Reiness, C. G., and Hall, Z. W., 1977, Electrical stimulation of denervated muscles reduces incorporation of methionine into the ACh receptor, Nature (London) 268:655.CrossRefGoogle Scholar
  36. Rotundo, R. L., and Fambrough, D. M., 1980a, Synthesis, transport and fate of acetylcholinesterase in cultured chick embryo muscle cells, Cell 22:583.PubMedCrossRefGoogle Scholar
  37. Rotundo, R. L., and Fambrough, D. M., 1980b, Secretion of acetylcholinesterase: Relation to acetylcholine receptor metabolism, Cell 22:595.PubMedCrossRefGoogle Scholar
  38. Rotundo, R. L., Gardner, J. M., Bayne, E. K., Wakshull, E., Anderson, M. J., and Fambrough, D. M., 1980, Cell surface and secretory glycoproteins of skeletal muscle, Carnegie Inst. Washington Yearb. 79:19.Google Scholar
  39. Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1978, Reinnervation of muscle fiber basal lamina after removal of myofibers: Differentiation of regenerating axons at original synaptic sites, J. Cell Biol. 78:176.PubMedCrossRefGoogle Scholar
  40. Stenman, S., and Vaheri, A., 1978, Distribution of a major connective tissue protein, fibronectin, in normal human tissues, J. Exp. Med. 147:1054.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Douglas M. Fambrough
    • 1
  • Ellen K. Bayne
  • John M. Gardner
  • M. John Anderson
  • Eric Wakshull
  • Richard L. Rotundo
  1. 1.Department of EmbryologyCarnegie Institution of WashingtonBaltimoreUSA

Personalised recommendations