Stimulated Phosphatidylinositol Turnover A Brief Appraisal

  • R. F. Irvine
  • R. M. C. Dawson
  • N. Freinkel


The phospholipid phosphatidylinositol (Fig. 1) (PI) is ubiquitous in animal tissues and occurs as a minor component (10 ± 5%; White, 1973) of the lipid bilayer of their cellular membranes. Its chemical structure is illustrated in Fig. 1, and the ester bonds that the various phospholipases can cleave are indicated. It is our intention in this introduction to review only briefly the history of the study of PI turnover and its relationship to cell stimulation, as detailed accounts can be found in reviews by L. E. Hokin (1968), Hawthorne and White (1975), and Michell (1975).


Arachidonic Acid Phosphatidic Acid Arachidonic Acid Release Acyl Transfer Diacylglycerol Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977 Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle pre-labelled with [32P]phosphate, Biochem. J. 162:61–73.PubMedGoogle Scholar
  2. Abdel-Latif, A. A., Luke, B., and Smith, J. P., 1980, Studies on the properties of a soluble phosphatidylinositol-phosphodiesterase of rabbit iris smooth-muscle, Biochim. Biophys. Acta. 614:425–434.PubMedGoogle Scholar
  3. Agranoff, B. W., 1978, Cyclitol confusion, Trends Biochem. Sci. 3:N283–235.Google Scholar
  4. Albano, J., Bhoola, K. D., and Kingsley, G., 1977, The control of cyclic GMP by calcium ionophores A23187, potassium and acetylcholine in enzyme-secreting pancreatic slices, J. Physiol. (Lond.) 267:35P–36P.Google Scholar
  5. Allan, D., and Michell, R. H., 1974a, Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes—activity at pH 5.5 and pH 7.0, Biochem. J. 142:591–597.PubMedGoogle Scholar
  6. Allan, D., and Michell, R. H., 1974b, Phosphatidylinositol cleavage in lymphocytes— requirement for calcium ions at a low concentration and effects of other cations, Biochem. J. 142:599–604.PubMedGoogle Scholar
  7. Allan, D., and Michell, R. H., 1975, Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348–349.PubMedGoogle Scholar
  8. Allan, D., Billah, M. M., Finean, J. B., and Michell, R. H., 1976, Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellula [Ca+], Nature 261:58–60.PubMedGoogle Scholar
  9. Allison, J. H., 1978, Lithium and brain myo-inositol metabolism, in: Cyclitols and Phosphoinositides (W. W. Wells, and F. Eisenberg, eds.), pp. 507–519, Academic Press, New York and London.Google Scholar
  10. Allison, J. H., and Cicero, T. J., 1980, Alchohol acutely depresses myo-inositol 1-phosphate levels in the male rat cerebral cortex, J. Pharmacol. Exp. Ther. 213:24–27.PubMedGoogle Scholar
  11. Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P., and Sherman, W. R., 1976, Increased brain myo-inositol 1-phosphate in lithuim-treated rats, Biochem. Biophys. Res. Commun. 71:664–670.PubMedGoogle Scholar
  12. Aloj, S. M., Lee, G., Grellman, E. F., Beguinot, F., Consiglio, E., and Koh, L. D., 1979, Role of phospholipids in the structure and function of the thyrotropin receptor, J. Biol. Chem. 254:9040–9048.PubMedGoogle Scholar
  13. Althous-Salzman, M., Carafoli, E., and Jakob, A., 1980, Ca2+, K+ redistributions and α-adrenergic activation of glycogenolysis in perfused rat livers, Eur. J. Biochem. 106:241–248.Google Scholar
  14. Angus, W. W., and Lester, F. L., 1972, Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinoistol derived from phosphatidylinositol, Arch. Biochem. Biophys. 151:483–495.PubMedGoogle Scholar
  15. Apitz-Castro, R. J., Mas, M. A., Cruz, M. R., and Jain, M. K., 1979, Isolation of homogeneous phospholipase A2 from human platelets, Biochem. Biophys. Res. Commun. 91:63–71.PubMedGoogle Scholar
  16. Babcock, D. F., Chen, J. J., Yin, B. P., and Lardy, H. A., 1979, Evidence for mitochondrial localization of the hormone responsive pool of Ca2+ in isolated hepatocytes, J. Biol Chem. 254:8117–8120.PubMedGoogle Scholar
  17. Baker, R. R., and Thompson, W., 1972, Positional distribution and turnover of fatty acids in phosphatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo, Biochim. Biophys. Acta 270:489–503.PubMedGoogle Scholar
  18. Baker, R. R., and Thompson, W., 1973, Selective acylation of 1-acylglycerophosphorylinositol by rat brain microsomes. (Comparison with 1-acylglycerophosphorylcholine.) J. Biol Chem. 248:7060–7065.PubMedGoogle Scholar
  19. Bell, F. P., 1978, Lipid exchange and transfer between biological lipid—protein structures, Prog. Lipid Res. 17:207–243.PubMedGoogle Scholar
  20. Bell, R. L., and Majerus, P. W., 1980, Thrombin-induced hydrolysis of phosphatidylinositol in human platelets, J. Biol. Chem. 255:1790–1792.PubMedGoogle Scholar
  21. Bell, R. L., Kennedy, D. A., Stanford, N., and Majerus, P. W., 1979, Diglyceride lipase: A pathway for arachidonate release from human platelets, Proc. Natl. Acad. Sci. 76:3238–3241.PubMedGoogle Scholar
  22. Bell, R. L., Baenziger, N. L., and Majerus, P. W., 1980, Bradykinin-stimulated release of arachidonate from phosphatidylinositol in mouse fibrosarcoma cells, Prostaglandins 20:269–274.PubMedGoogle Scholar
  23. Berridge, M. J., and Fain, J. N., 1979, Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine, Biochem. J. 178:59–69.PubMedGoogle Scholar
  24. Berridge, M. J., and Lipke, H., 1979, Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytryptamine and cyclic nucleotides, J. Exp. Biol. 78:137–148.Google Scholar
  25. Billah, M. M., and Michell, R. H., 1979, Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones: Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation, Biochem. J. 182:661–668.PubMedGoogle Scholar
  26. Bills, T. K., Smith, J. B., and Silver, M. J., 1977, Selective release of arachidonic acid from the phospholipids of human platelets in response to thrombin, J. Clin. Invest. 60:1–6.PubMedGoogle Scholar
  27. Blackmore, P. F., Dehaye, J.-P., and Exton, J. H., 1979, Studies on α-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in α-adrenergic activation of phosphorylase in perfused rat liver, J. Biol. Chem. 254:6945–6950.PubMedGoogle Scholar
  28. Blackwell, G. J., Duncombe, W. G., Flower, R. J., Parsons, M. F., and Vane, J. R., 1977, The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs, Br. J. Pharmac. 59:353–366.Google Scholar
  29. Blackwell, G. J., Carnuccio, R., DiRosa, M. Flower, R. J., Parente, L., and Persico, P., 1980, Macrocortin: A polypeptide causing the anti-phospholipase effect of glucocorticoids, Nature 287:147–149.PubMedGoogle Scholar
  30. Bleasdale, J. E., Hawthorne, J. N., Widlund, L., and Heilbronn, E., 1976, Phospholipid turnover in Torpedo marmorata electric organ during discharge in vivo, Biochem. J. 158:557–565.PubMedGoogle Scholar
  31. Bleasdale, J. E., Wallis, P., Macdonald, P. C., and Johnston, J. M., 1979, Characterization of the forward and reverse reactions catalysed by CDP-diacylglycerolinositol transferase in rabbit lung tissue, Biochim. Biophys. Acta 575:135–147.PubMedGoogle Scholar
  32. Boggs, J. M., Wood, D. D., Moscarello, M. A., and Papahadjopoulos, 1977a, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles, Biochemistry 16:2325–2329.PubMedGoogle Scholar
  33. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977b, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16:5420–5426.PubMedGoogle Scholar
  34. Broekman, M. J., Ward, J. W., and Marcus, A. J., 1980, Phospholipid metabolism in stimulated human platelets, J. Clin. Invest. 66:275–283.PubMedGoogle Scholar
  35. Brophy, P. J., Burback, P., Nelemans, S. A., Westerman, J., Wirtz, K. W. A., and Van Deenen, L. L. M., 1978, The distribution of phosphatidylinositol in microsomal membranes from rat liver after biosynthesis de novo, Biochem. J. 174:413–420.PubMedGoogle Scholar
  36. Burgess, G. M., Claret, M., and Jenkinson, D. H., 1979, Effects of catecholamines and calcium movements in isolated hepatocytes, Nature 279:544–546.PubMedGoogle Scholar
  37. Bygrave, F. L., 1978, Mitochondria and the control of intracellular calcium, Biol. Rev. 53:43–79.PubMedGoogle Scholar
  38. Chang, H. W., and Boch, E., 1979, Structural stabilisation of isolated acetylcholine receptor: Specific interaction with phospholipids, Biochemistry 18:172–179.PubMedGoogle Scholar
  39. Christophe, J. P., Fransden, E. K., Conlon, T. P., Krishna, G., and Gardner, J. D., 1976, Action of cholecystokinin, cholinergic agents, and A-23187 on accumulation of guanosine 3′ : S′-monophosphate in dispersed guinea pig pancreatic acinar cells, J. Biol. Chem. 251:4640–4645.PubMedGoogle Scholar
  40. Clements, R. S., and Rhoten, W. B., 1976, Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets, J. Clin. Invest. 57:684–691.PubMedGoogle Scholar
  41. Cockcroft, S., and Gomperts, B. D., 1979a, Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells, J. Physiol. 296:229–243.PubMedGoogle Scholar
  42. Cockcroft, S., and Gomperts, B. D., 1979b, Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling—studies with rat peritoneal mast cells, Biochem. J. 178:681–687.PubMedGoogle Scholar
  43. Cockcroft, S., and Gomperts, B. D., 1980, The ATP4− receptor of mast cells, Biochem. J. 188:789–798.PubMedGoogle Scholar
  44. Cockcroft, S., Bennett, J. P., and Gomperts, B. D., 1980a, f-Met-Leu-Phe-induced phosphatidylinositol turnover in rabbit neutrophils is dependent on extracellular calcium, FEBS Lett. 110:115–118.PubMedGoogle Scholar
  45. Cockcroft, S., Bennett, J. P., and Gromperts, B. D., 1980B, Stimulus-secretion coupling in rabbit neutrophils is not mediated by phosphatidylinositol breakdown, Nature 288:275–277.PubMedGoogle Scholar
  46. Curtain, C. C., Looney, F. D., and Smelstorius, J. A., 1980, Lipid domain formation and ligand induced lymphocyte membrane changes, Biochim. Biophys. Acta 596:43–56.PubMedGoogle Scholar
  47. Dawson, R. M. C., 1954, The measurement of 32P labelling of individual kephalins and lecithins in a small sample of tissue, Biochim. Biophys. Acta 14:379–384.Google Scholar
  48. Dawson, R. M. C., 1959, Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77.PubMedGoogle Scholar
  49. Dawson, R. M. C., 1973, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 97–116, Elsevier, Amsterdam, London, New York.Google Scholar
  50. Dawson, R. M. C., and Freinkel, N., 1961, The distribution of free meso-inositol in mammalian tissues including some observations on the lactating rat, Biochem. J. 78:606–610.PubMedGoogle Scholar
  51. Dawson, R. M. C., and Hemington, N., 1977, A phosphodiesterase in rat kidney cortex that hydrolyses glycerophosphorylinositol, Biochem. J. 162:241–245.PubMedGoogle Scholar
  52. Dawson, R. M. C., and Irvine, R. F., 1978, Possible role of lysosomal phospholipases in inducing tissue prostaglandin synthesis, Adv. Prostaglandin Thrombox. Res. 3:47–54.Google Scholar
  53. Dawson, R. M. C., Freinkel, N., Jungawala, F. B., and Clarke, N., 1971, The enzymic formation of myo-inositol 1 : 2 cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605–607.PubMedGoogle Scholar
  54. Dawson, R. M. C., Hemington, N., Richards, D. E., and Irvine, R. F., 1979, sn-Glycerol(3)phosphoinositol glycerophosphohydrolase, a new phosphodiesterase in rat tissues, Biochem. J. 182:39–45.PubMedGoogle Scholar
  55. Dawson, R. M. C., Hemington, N., and Irvine, R. F., 1980, The inhibition and activation of Ca2+-dependent phosphatidylinositol phosphodiesterase by phospholipids and blood plasma, Eur. J. Biochem. 112:33–38.PubMedGoogle Scholar
  56. Denton, R. M., and McCormack, J. G., 1980, The role of calcium in the regulation of mitochondrial metabolism Biochem. Soc. Trans. 8:266–268.PubMedGoogle Scholar
  57. Douglas, W. W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34:451–474.PubMedGoogle Scholar
  58. Durell, J., Garland, J. T., and Friedel, R. O., 1969, Acetylcholine action: Biochemical aspects, Science 165:862–866.PubMedGoogle Scholar
  59. Eisenberg, F., 1967, D-Myoinositol 1-phosphate as product of cyclization of glucose-6-phosphate and substrate for a specific phosphatase in rat testis, J. Biol. Chem. 242:1375–1382.PubMedGoogle Scholar
  60. Elsbach, P., and Farrow, S., 1969, Cellular triglyceride as a source of fatty acid for lecithin synthesis during phagocytosis, Biochim. Biophys. Acta 176:438–441.PubMedGoogle Scholar
  61. Fain, J. N., and Berridge, M. J., 1979a, Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland, Biochem. J. 178:45–58.PubMedGoogle Scholar
  62. Fain, J. N., and Berridge, M. J. 1979b, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands, Biochem. J. 180:655–661.PubMedGoogle Scholar
  63. Farese, R. V., Sabir, M. A., and Larson, R. F., 1980, On the mechanisms whereby ACTH and cyclic AMP increase adrenal phosphoinositides. Rapid stimulation of the synthesis of phosphatidic acid and derivatives of CDP-diacylglycerol, J. Biol. Chem. 255:7232–7237.PubMedGoogle Scholar
  64. Feinstein, M. B., 1980, Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets, Biochem. Biophys. Res. Commun. 93:593–600.PubMedGoogle Scholar
  65. Ferber, E., Munder, P. G., Fischer, H., and Gerisch, G., 1970, High phospholipase activities in amoebae of Dictyostelium discoideum, Eur. J. Biochem. 14:253–257.PubMedGoogle Scholar
  66. Fex, G., and Lernmark, Å., 1972, Effect of D-glucose on the incorporation of 32P into phospholipids of mouse pancreatic islets, FEBS Lett. 25:287–291.PubMedGoogle Scholar
  67. Fisher, D. B., and Mueller, G. C., 1971, Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes, Biochim. Biophys. Acta 248:434–448.Google Scholar
  68. Flower, R. J., and Blackwell, G. J., 1976, The importance of phospholipase-A2 in prostaglandin biosynthesis, Biochem. Pharmacol. 25:285–291.PubMedGoogle Scholar
  69. Freinkel, N., 1957, Pathways of thyroidal phosphorus metabolism: The effect of pituitary thyrotropin upon the phospholipids of the sheep thyroid gland, Endocrinology 61:448–460.PubMedGoogle Scholar
  70. Freinkel, N., 1964, The intermediary metabolism of thyroid tissue, in: The Thyroid Gland, Vol. I (R. Pitt-Rivers and W. R. Trotter, eds.), pp. 131–162, Butterworths, London.Google Scholar
  71. Freinkel, N., and Cohanim, N., 1972, Islet phospholipogenesis and glucose-stimulated insulin secretion, J. Clin. Invest. 51:33a.Google Scholar
  72. Freinkel, N., Dawson, R. M. C., Ingbar, S. M., and White, R. W., 1959, The free myoinositol of thyroid tissue, Proc. Soc. Exp. Biol. Med. 100:549–551.PubMedGoogle Scholar
  73. Freinkel, N., El Younsi, C., and Dawson, R. M. C., 1975, Interrelations between the phospholipids of rat pancreatic islets during glucose stimulation and their response to medium inositol and tetracaine, Eur. J. Biochem. 59:245–252.PubMedGoogle Scholar
  74. Friedel, R. O., Brown, J. D., and Durell, J., 1969, The enzymic hydrolysis of phosphatidylinositol by guinea-pig brain: Subcellular distribution and hydrolysis products, J.Neurochem. 16:371–378.PubMedGoogle Scholar
  75. Gerrard, J. M., Kindom, S. E., Peterson, D. A., Peller, J., Krantz, K. E., and White, J. G., 1979, Lysophosphatidic acids (influence on platelet aggregation and intracellular calcium flux), Am. J. Pathol. 96:423–438.PubMedGoogle Scholar
  76. Ginsborg, B. L., and House, G. R., 1980, Stimulus-response coupling in gland cells, Annu. Reu. Biophys. Bioeng. 9:55–80.Google Scholar
  77. Glass, D. B., Frey, W. F., Carr, D. W., and Goldberg, N. D., 1977, Stimulation of human platelet guanylate cyclase by fatty acids, J. Biol. Chem. 252:1279–1285.PubMedGoogle Scholar
  78. Graff, G., Stephenson, J. H., Glass, D. B., Haddox, M. K., and Goldberg, N. D., 1978, Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides, J. Biol. Chem. 253;7662–7676.PubMedGoogle Scholar
  79. Griffin, H. D., and Hawthorne, J. N., 1978, Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-diphosphate in guinea-pig synaptosomes, Biochem. J. 176:541–552.PubMedGoogle Scholar
  80. Griffin, H. D., Hawthorne, J. N., Sykes, M., and Orlacchio, A., 1979, A calciumrequirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors, Biochem. Pharmacol. 28:1143–1147.PubMedGoogle Scholar
  81. Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.PubMedGoogle Scholar
  82. Hanson, B. A., and Lester, R. L., 1980, Effects of inositol starvation on phospholipid and glycan synthesis in Saccharomyces cerevisiae, J. Bacteriol. 142:79–89.PubMedGoogle Scholar
  83. Hauser, G., and Eichberg, J., 1975, Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propanolol, J.Biol. Chem. 250:105–112.PubMedGoogle Scholar
  84. Hauser, H., Chapman, D., and Dawson, R. M. C., 1969, Physical studies of phospholipids. XL Ga2+ binding to monolayers of phosphatidylserine and phosphatidylinositol, Biochim. Biophys. Acta 183:320–333.PubMedGoogle Scholar
  85. Hawthorne, J. N., and White, D. A., 1975, Myo-inositol lipids, Vitam. Horm. 33:529–573.PubMedGoogle Scholar
  86. Hawthorne, J. M., Adnan, N. M., and Lymberpoulos, G., 1980, Membrane phospholipids, exocytosis and cell division, Biochem. Soc. Trans. 8:30–32.PubMedGoogle Scholar
  87. Hayashi, E., Maeda, T., and Tomita, T., 1974, The effect of myo-inositol deficiency on lipid metabolism in rats. 1. The alteration of lipid metabolism in myo-inositol deficient rats, Biochim. Biophys. Acta 360:134–145.PubMedGoogle Scholar
  88. Hayashi, E., Hasegawa, R., and Tomita, T., 1976, Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its mechanism, J. Biol. Chem. 251:5759–5769.PubMedGoogle Scholar
  89. Haye, B., Champion, S., and Jacquemin, C., 1973, Control by TSH of a phospholipase A2 activity, a limiting factor in the biosynthesis of prostaglandins in the thyroid, FEBS Lett. 30:253–259.PubMedGoogle Scholar
  90. Hidaka, H., and Asano, T., 1977, Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides, Proc. Natl. Acad. Sci. (U.S.A.) 74:3657–3661.Google Scholar
  91. Hirasawa, K., Irvine, R. F., and Dawson, R. M. C., 1981a, The hydrolysis of phosphatidylinositol monolayers at an air/water interface by the calcium-ion-dependent phosphatidylinositol phosphodiesterase of pig brain, Biochem. J. 193:607–614.PubMedGoogle Scholar
  92. Hirasawa, K., Irvine, R. F., and Dawson, R. M. C., 1981b, The catabolism of phosphatidylinositol by an EDTA-insensitive phospholipase At and calcium-dependent phosphatidylinositol phosphodiesterase in rat brain, Eur. J. Biochem. 120:53–58.PubMedGoogle Scholar
  93. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082–1090.PubMedGoogle Scholar
  94. Hodson, S., 1978, The ATP-dependent concentration of calcium by a Golgi apparatus— rich fraction isolated from rat liver, J. Cell. Sci. 30:117–128.PubMedGoogle Scholar
  95. Hokin, L. E., 1966, Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices, Biochim. Biophys. Acta 115:219–221.PubMedGoogle Scholar
  96. Hokin, L. E., 1968, Dynamic aspects of phospholipids during protein secretion, Int. Rev. Cytol. 23:187–208.PubMedGoogle Scholar
  97. Hokin, M. R., 1968, Studies on chemical mechanisms of the action of neurotransmitters and hormones. II. Increased incorporation of 32P in phosphatides as a second, adaptive response to pancreozymin or acetylcholine in pigeon pancreas slices, Arch. Biochem. Biophys. 124:280–284.PubMedGoogle Scholar
  98. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.PubMedGoogle Scholar
  99. Hokin, M. R., and Hokin, L. E., 1964, Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in: Metabolism and Physiological Significance of Lipids (R. M. C. Dawson, D. N. Rhodes, eds.), pp. 423–434, John Wiley & Sons, New York.Google Scholar
  100. Hokin, M. R., Hokin, L. E., Saffron, M., Schally, A. V., and Zimmerman, B. V., 1958, Phospholipids and the secretion of adrenocorticotropin and of corticosteroids, J. Biol. Chem. 233:811–813.PubMedGoogle Scholar
  101. Hokin-Neaverson, M., 1977, Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function, Adv. Exp. Biol. Med. 83:429–446.Google Scholar
  102. Hokin-Neaverson, M., Sadeghian, K., Majumder, A. L., and Eisenberg, F., 1975, Inositol is the water-soluble product of acetylcholine-stimulated breakdown of phosphatidylinositol in mouse pancreas, Biochem. Biophys. Res. Commun. 67:1537–1544.PubMedGoogle Scholar
  103. Hokin-Neaverson, M., Sadeghian, K., Harris, D. W., and Merrin, J. S., 1977, Synthesis of CDP-diglyceride from phosphatidylinositol and CMP, Biochem. Biophys. Res. Commun. 78:364–371.PubMedGoogle Scholar
  104. Holub, B. J., 1976, Specific formation of arachidonoyl phosphatidylinositol from 1-acyl-sn-glycero-phosphorylinositol in rat liver, Lipids 11:1–5.PubMedGoogle Scholar
  105. Holub, B. J., and Kuksis, A., 1971, Differential distribution of orthophosphate-32P and glycerol-14C among molecular species of phosphatidylinositol of rat liver in vivo, J. Lipid Res. 12:699–705.PubMedGoogle Scholar
  106. Holub, B. J., and Kusis, A., 1972, Further evidence for the interconversion of monophosphoinositides in vivo, Lipids 7:78–80.PubMedGoogle Scholar
  107. Hong, S. L., and Deykin, D., 1979, Specificity of phospholipases in methylcholanthrenetransformed mouse fibroblasts activated by bradykinin, thrombin, serum and ionophore A23187, J. Biol. Chem. 254:11463–11466.PubMedGoogle Scholar
  108. Hosaka, K., Yamashita, S., and Numa, S., 1975, Partial purification, properties and subcellular distribution of rat liver phosphatidate phosphatase, J. Biochem. 77:501–509.PubMedGoogle Scholar
  109. Hsueh, W., Isakson, P. C., and Needleman, P., 1977, Hormone selective lipase activation in the isolated rabbit heart, Prostaglandins 13:1073–1076.PubMedGoogle Scholar
  110. Hsueh, W., Kuhn, C., and Needleman, P., 1979, Relationship of prostaglandin secretion by rabbit alveolar macrophages to phagocytosis and lysosomal enzyme release, Biochem. J. 184:345–354.PubMedGoogle Scholar
  111. Igrashi, Y., and Kondo, Y., 1980, Acute effect of thyrotropin on phosphatidylinositol degradation and transient accumulation of diacylglycerol in isolated thyroid follicles, Biochem. Biophys. Res. Commun. 97:759–765.Google Scholar
  112. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian tissues? Biochem. J. 204:1–14.Google Scholar
  113. Irvine, R. F., and Dawson, R. M. C., 1978, The distribution of calcium-dependent phosphatidylinositol-specific phosphodiesterase in rat brain, J. Neurochem. 31:1427–1434.PubMedGoogle Scholar
  114. Irvine, R. F., and Dawson, R. M. C., 1979a, Neural phospholipases hydrolysing phosphatidylinositol and their possible role in stimulated turnover of this phospholipid, Biochem. Soc. Trans. 7:353–357.PubMedGoogle Scholar
  115. Irvine, R. F., and Dawson, R. M. C., 1979b, Transfer of arachidonic acid between phospholipids in rat liver microsomes, Biochem. Biophys. Res. Commun. 91:1349–1405.Google Scholar
  116. Irvine, R. F., and Dawson, R. M. C., 1980a, The control of phosphatidylinositol turnover in cell membranes, Biochem. Soc. Trans. 8:27–30.PubMedGoogle Scholar
  117. Irvine, R. F., and Dawson, R. M. C., 1980b, The mechanism and function of phosphatidylinositol turnover, Biochem. Soc. Trans. 8:376–377.PubMedGoogle Scholar
  118. Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1977, Phosphatidylinositoldegrading enzymes in liver lysosomes, Biochem. J. 164:277–280.PubMedGoogle Scholar
  119. Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1978, The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain, Biochem. J. 176:475–484.PubMedGoogle Scholar
  120. Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1979a, Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase, Biochem. J. 178:497–500.PubMedGoogle Scholar
  121. Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1979b, The calcium-dependent phosphatidylinositol-phosphodiesterase of rat brain, mechanisms of suppression and stimulation, Eur. J. Biochem. 99:525–530.PubMedGoogle Scholar
  122. Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1980a, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J. 192:279–283.PubMedGoogle Scholar
  123. Irvine, R. F., Letcher, A. J., Brophy, P. J., and North, M. J., 1980b, Phosphatidylinositol-degrading enzymes in the cellular slime mould Dictyostelium discoideum, J. Gen. Microbiol. 121:495–497.Google Scholar
  124. Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1980c, Thyrotropin-stimulated phosphatidylinositol-specific phospholipase A2 in pig thyroid, a re-examination, FEBS Lett. 119:287–289.PubMedGoogle Scholar
  125. Ito, T., Ohnishi, S., Ishinaga, M., and Kito, M., 1975, Synthesis of a new phosphatidylserine spin-label and Ca-induced lateral phase separation in phosphatidylserine -phosphatidylcholine membranes, Biochemistry 14:3064–3069.Google Scholar
  126. Jelsema, C. L., and Morré, D. J., 1978, Distribution of phospholipid biosynthetic enzymes among cell components of rat liver, J. Biol. Chem. 253:7960–7971.PubMedGoogle Scholar
  127. Jesse, R. L., and Franson, R. C., 1979, Modulation of purified phospholipase A2 activity from human platelets by calcium and indomethacin, Biochim. Biophys. Acta 575:467–470.PubMedGoogle Scholar
  128. Jones, L. M., and Michell, R. H., 1975, The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover, Biochem. J. 148:479–485.PubMedGoogle Scholar
  129. Jones, L. M., Cockcroft, S., and Michell, R. H., 1979, Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists by histamine and by caerulein, Biochem. J. 182:669–676.PubMedGoogle Scholar
  130. Kannagi, R., and Koizumi, K., 1979, Effect of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity, Biochim. Biophys. Acta 556:423–433.PubMedGoogle Scholar
  131. Keenan, R. W., and Hokin, L. E., 1962, The identification of lysophosphatidylinositol and its enzymic conversion to phosphatidylinositol, Biochim. Biophys. Acta 60:428–430.PubMedGoogle Scholar
  132. Kelly, R. E., and Rice, R. V., 1969, Ultrastructural studies on the contractile mechanism of smooth muscle, J. Cell Biol. 42:683–694.PubMedGoogle Scholar
  133. Kemp, P., Hübscher, G., and Hawthorne, J. N., 1961, Phosphoinositides 3. Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200.PubMedGoogle Scholar
  134. Kennedy, E. P., 1962, The metabolism and function of complex lipids, Harvey Lect. 57:143–171.Google Scholar
  135. Keough, K. M. W., and Thompson, W., 1972, Soluble and particulate forms of phosphoinositide phosphodiesterase in ox brain, Biochim. Biophys. Acta 270:324–336.PubMedGoogle Scholar
  136. Kirk, C. J., Verrinder, T. R., and Hems, D. A., 1978, The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions, Biochem. Soc. Trans. 6:1031–1033.PubMedGoogle Scholar
  137. Kirk, C. J., Rodrigues, L. M., and Hems, D. A., 1979, The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes, Biochem. J. 178:493–496.PubMedGoogle Scholar
  138. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273–2216. PubMedGoogle Scholar
  139. Koch, M. A., and Diringer, H., 1974, Isolation of cyclic inositol-l,2-phosphate from mammalian cells and a probable function of phosphatidylinositol turnover, Biochem. Biophys. Res. Commun. 58:361–367.PubMedGoogle Scholar
  140. Kuksis, A., and Mookerjea, S., 1978, Inositol, Nutr. Rev. 36:233–238.PubMedGoogle Scholar
  141. Lake, W., Rutherford, J. and Freinkel, N., 1978, A role for ionic calcium in pancreatic islet stimulus-secretion coupling, Clin. Res. 26:420A.Google Scholar
  142. Lapetina, E. G., and Cuatracasas P., 1979, Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the secretion of serotonin, Biochim. Biophys. Acta 573:394–420.PubMedGoogle Scholar
  143. Lapetina, E. G., and Hawthorne, J. N., 1971, The diglyceride kinase of rat cerebral cortex, Biochem. J. 122:171–179.PubMedGoogle Scholar
  144. Lapetina, E. G., and Michell, R. H., 1973, A membrane-bound activity catalysing phosphatidylinositol breakdown to 1,2-diacylglycerol, D-myoinositol 1:2 cyclic phosphate, and D-myoinositol 1-phosphate, Biochem. J. 131:433–442.PubMedGoogle Scholar
  145. Levey, G. S., 1971, Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidylinositol, J. Biol. Chem. 246:7405–7410.PubMedGoogle Scholar
  146. Lloyd, J. V., and Mustard, J. F., 1973, Changes in 32P-content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin, Br. J. Haemotol. 26:243–253.Google Scholar
  147. Lloyd, J. V., Nishizawa, E. E., and Mustard, J. F., 1973, Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di- and triphosphoinositides, Br. J. Haemotol. 23:77–79.Google Scholar
  148. Lloyd, T., 1979, The effects of phosphatidylinositol on tyrosine hydroxylase, J. Biol. Chem. 254:7247–7254.PubMedGoogle Scholar
  149. Low, M. G., and Finean, J. B., 1976, The action of phosphatidylinositol-specific phospholipase C on membranes, Biochem. J. 154:203–208.PubMedGoogle Scholar
  150. Low, M. G., and Finean, J. B., 1978, Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C., Biochim, Biophys. Acta 508:565–570.Google Scholar
  151. Lucas, M., Schmid, G., Kromas R., and Löffler, G., 1978, Calcium metabolism and enzyme secretion in guinea pig pancreas (uptake storage and release of calcium in whole cells and mitochondrial and microsomal fractions), Eur. J. Biochem. 85:609–619.PubMedGoogle Scholar
  152. Lunt, G. G., and Pickard, M. R., 1975, The sub-cellular localization of carbamylcholinestimulated phosphatidylinositol turnover in rat cerebral cortex in vivo, J. Neurochem. 24:1203–1208.PubMedGoogle Scholar
  153. Mandersloot, J. G., Roelofsen, B., and de Gier, J., 1978, Phosphatidylinositol as the endogenous activator of the (Na + and K+) ATP-ase in microsomes of rabbit kidney, Biochim. Biophys. Acta 508:478–485.PubMedGoogle Scholar
  154. Marcus, A. J., 1978, The role of lipids in platelet function: With particular reference to the arachidonic acid pathway, J. Lipid Res. 19:793–826.PubMedGoogle Scholar
  155. Marcus, A. J., Ullman, H. L., and Safier, L. B., 1969, Lipid composition of subcellular particles of human blood platelets, J. Lipid Res. 10:108–114.PubMedGoogle Scholar
  156. Marshall, P. J., Dixon, J. F., and Hokin, L. E., 1980, Evidence for a role in stimulus-secretion coupling of prostaglandins derived from release of arachidonoyl residues as a result of phosphatidylinositol breakdown, Proc. Natl. Acad. Sci. 77:3292–3296.PubMedGoogle Scholar
  157. Matsuzawa, Y., and Hostetler, K. Y., 1980, Properties of phospholipase C isolated from rat liver lysosomes, J. Biol. Chem. 254:646–652.Google Scholar
  158. Mauco, G., Chap, H., Simon, M.-F., and Douste-Blazy, L., 1978, Phosphatidic and lysophosphatidic acid production in phospholipase C- and thrombin treated platelets. Possible involvement of a platelet lipase, Biochimie 60:653–661.PubMedGoogle Scholar
  159. McDonald, J. M., Bruns, N. E., and Jarrett, L., 1978, Ability of insulin to increase calcium uptake by adipocyte endoplasmic reticulum, J. Biol. Chem. 253:3504–3508.PubMedGoogle Scholar
  160. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  161. Michell, R. H., 1979, Inositol phospholipids in membrane function, Trends Biochem. Sci. 4:128–131.Google Scholar
  162. Michell, R. H., Jafferji, S. S., and Jones, L. M., 1976, Receptor occupying dose-response curve suggests that phosphatidylinositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor, FEBS Lett. 69:1–5.PubMedGoogle Scholar
  163. Murray, M. R., de Lam, H. H., and Chargaff, E., 1951, Specific inhibition by mesoinositol of the colchicine effect on rat fibroblasts, Exp. Cell Res. 2:165–177.Google Scholar
  164. Nathan, I., Fleischer, G., Livne, A., Dvilansky, A., and Parola, A. H., 1979, Membrane microenvironmental changes during activation of human blood platelets by thrombin, J. Biol. Chem. 254:9822–9828.PubMedGoogle Scholar
  165. Petersen, O. H., and Laugier, R., 1980, Receptor-mediated control via the calcium effector of membrane ion permeability in pancreatic acinar cells, Biochem. Soc. Trans. 8:268–270.PubMedGoogle Scholar
  166. Pickard, M. R., and Hawthorne, J. N., 1978, The labelling of nerve ending phospholipids in guinea-pig brain in vivo and the effect of electrical stimulation on phosphatidylinositol metabolism in prelabelled synaptosomes, J. Neurochem. 30:145–155.PubMedGoogle Scholar
  167. Pickett, W. C., Jesse, R. L., and Cohen, P., 1977, Initiation of phospholipase A2 activity in human platelets by the calcium ion ionophore A23187, Biochim. Biophys. Acta 486:209–213.Google Scholar
  168. Prpić, V., Spencer, T. L., and Bygrave, F. L., 1978, Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal, Biochem. J. 176:705–714.PubMedGoogle Scholar
  169. Putney, J. W., Weiss, S. J., Van De Walle, C. M., and Haddas, R. A., 1980, Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284:345–347.PubMedGoogle Scholar
  170. Resch, K., 1976, Membrane-associated events in lymphocyte activation, in: Receptors and Recognition, Series A1 (P. Cuatracasas and M. F. Greaves, eds.), pp. 61–117, Chapman and Hall, London.Google Scholar
  171. Richards, D. E., Irvine, R. F., and Dawson, R. M. C., 1979, Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes, Biochem. J. 182:599–606.PubMedGoogle Scholar
  172. Ristow, H. J., Messmer, T. D., Walter, S., and Paul, D., 1980, Stimulation of DNA synthesis and myo-inositol incorporation in mammalian cells, J. Cell. Physiol. 103:263–269.PubMedGoogle Scholar
  173. Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587.PubMedGoogle Scholar
  174. Rittenhouse-Simmons, S., 1980, Indomethacin-induced accumulation of diglyceride in activated human platelets, J. Biol. Chem. 255:2259–2262.PubMedGoogle Scholar
  175. Rittenhouse-Simmons, S., Russell, F. A., and Deykin, D., 1976, Transfer of arachidonic acid to human platelet plasmalogen in response to thrombin, Biochem. Biophys. Res. Commun. 70:295–301.PubMedGoogle Scholar
  176. Roman, I., Gmaj, P., Nowicka, C., and Angielski, S., 1979, Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions, Eur. J. Biochem. 102:615–523.PubMedGoogle Scholar
  177. Salmon, D. M., and Honeyman, T. W., 1980, Proposed mechanism of cholinergic action in smooth muscle, Nature 284:344–345.PubMedGoogle Scholar
  178. Schacht, J., and Agranoff, B. W., 1974, Stimulation of phosphatidic acid by cholinergic agents in guinea-pig synaptosomes, J. Biol. Chem. 249:1551–1557.PubMedGoogle Scholar
  179. Schellenberg, R. R., and Gillespie, E., 1977, Colchicine inhibits phosphatidylinositol turnover induced in lymphocytes by concanavalin A, Nature 261:741–742.Google Scholar
  180. chrey, M. P., and Rubin, R. P., 1979, Characterization of a calcium-mediated activation of arachidonic acid turnover in adrenal phospholipids by corticotropin, J. Biol. Chem. 254:11234–11241.Google Scholar
  181. Scott, T. W., and Dawson, R. M. C., 1968, Metabolism of phospholipids by spermatozoa and seminal plasma, Biochem. J. 108:457–463.PubMedGoogle Scholar
  182. Scott, T. W., Mills, S. C., and Freinkel, N., 1968, The mechanism of thyrotropin action in relation to lipid metabolism in thyroid tissue, Biochem. J. 109:325–332.PubMedGoogle Scholar
  183. Scott, T. W., Freinkel, N., Klein, J. H., and Nitzan, M., 1970, Metabolism of phospholipids and carbohydrates in dispersed porcine thyroid cells, Endocrinology 87:854–863.PubMedGoogle Scholar
  184. Seamark, R. F., Tate, M. E., and Smeaton, T. C., 1968, The occurrence of scylloinositol and D-glycerol l-(L-myoinositol 1-hydrogen phosphate) in the male reproductive tract, J. Biol. Chem. 243:2424–2428.PubMedGoogle Scholar
  185. Shaw, J. O., Klusick, S. J., and Hanahan, D. J., 1981, Activation of rabbit platelet phospholipase and thromboxane synthesis by l-O-hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine (platelet activating factor), Biochim. Biophys. Acta 663:222–229.PubMedGoogle Scholar
  186. Sherman, W. R., Stewart, M. A., Kurien, M. M., and Goodwin, S. L., 1968, The measurement of myo-inositol, myo-inose-2 and scyllo-inositol in mammalian tissues, Biochim. Biophys. Acta 158:197–205.PubMedGoogle Scholar
  187. Shum, T. Y. P., Gray, N. C. C., and Strickland, K. P., 1979, The deacylation of phosphatidylinositol by rat brain preparations, Can. J. Biochem. 57:1359–1367.PubMedGoogle Scholar
  188. Slaby, F., and Bryan, J., 1976, High uptaue of myo-inositol by rat pancreatic tissue in vitro stimulates secretion, J. Biol. Chem. 251:5078–5086.PubMedGoogle Scholar
  189. Sun, G. Y., Su, K. L., Der, O. M., and Tang, W., 1979, Enzymic regulation of arachidonate metabolism in brain membrane phosphoglycerides, Lipids 14:229–235.PubMedGoogle Scholar
  190. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979a,Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692–3695.PubMedGoogle Scholar
  191. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1979b, Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91(4):1218–1224.PubMedGoogle Scholar
  192. Takenawa, T., Satto, M., Nagai, Y., and Egawa, K., 1977, Solubilization of the enzyme catalyzing CDP-diglyceride-independent incorporation of myo-inositol into phosphatidyl inositol and its comparison to CDP-diglyceride : inositol transferase, Arch. Biochem. Biophys. 182:244–250.PubMedGoogle Scholar
  193. Tamarit-Rodriguez, J., Hellmann, B., and Sehlin, J., 1978, Metabolic characteristics of pancreatic β-cells exposed to calcium-transporting ionophores, Biochim. Biophys. Acta 496:167–174.Google Scholar
  194. Taylor, W. M., Prpić, V., Exton, J. H., and Bygrave, F. L., 1980, Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with α-adrenergic agonists and with glucagon, Biochem. J. 188:443–450.PubMedGoogle Scholar
  195. Thompson, W., and McDonald, G., 1979, Isolation of a specific arachidonoyl coenzyme A:cytidine diphosphate monoacylglycerol acyltransferase, J. Biol. Chem. 254:3311–3314.PubMedGoogle Scholar
  196. Tolbert, M. E. M., White, A. C, Aspry, K., Cutts, J., and Fain, J. N., 1980, Stimulation by vasopressin and α-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells, J. Biol. Chem. 255:1938–1944.PubMedGoogle Scholar
  197. Trus, M. D., Hintz, C. S., Weinstein, J. B., Williams, A. D., Pagliara, A. S., and Matschinsky, F. M., 1979, Comparison of the effects of glucose and acetylcholine on insulin release and intermediary metabolism in rat pancreatic islets, J. Biol. Chem. 254:3921–3929.PubMedGoogle Scholar
  198. Van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., Van Deenen, L. L. M., and de Gier, J., 1978, Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine, Biochim. Biophys. Acta 512:84–96.PubMedGoogle Scholar
  199. Vignais, P. M., Vignais, P. V., and Lehninger, A. L., 1964, Identification of phosphatidylinositol as a factor required in mitochondrial contraction, J. Biol. Chem. 239:2011–2021.PubMedGoogle Scholar
  200. Wassef, M. K., and Horowitz, M. I., 1981, Degradation of phosphatidylinositol by soluble enzymes of rat gastric mucosa, Biochim. Biophys. Acta. 665:234–243.PubMedGoogle Scholar
  201. White, D. A., Pounder, D. J., and Hawthorne, J. N., 1971, Phospholipase A1, activity of guinea pig pancreas, Biochim. Biophys. Acta 242:99–107.PubMedGoogle Scholar
  202. White, M. A., 1973, The phospholipid composition of mammalian tissues, in: Form and Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 441–482, Elsevier, Amsterdam, London, New York.Google Scholar
  203. Wootton, J. A., and Kinsella, J. E., 1977, Properties of cytidinediphosphodiacyl-sn-glycerol:myoinositol transferase of bovine mammary tissue, Int. J. Biochem. 8:449–456.Google Scholar
  204. Yamashita, S., and Oshima, A., 1980, Regulation of phosphatidylethanolamine methyltransferase level by myo-inositol in Saccharomyces cerevisiae, Eur. J. Biochem. 104:611–616.PubMedGoogle Scholar
  205. Yandrasitz, J. R., and Segal, S., 1979, The effect of MnCl2 on the basal and acetylcholine-stimulated turnover of phosphatidylinositol in synaptosomes, FEBS Lett. 108:279–282.PubMedGoogle Scholar
  206. Yousef, I. M., Fisher, M. M, Peikarski, J., and Holub, B. J., 1977, Activity of phospholipid-synthesizing enzymes in rat liver plasma membranes and the source of biliary lecithin, Lipids 12:140–144.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • R. F. Irvine
    • 1
  • R. M. C. Dawson
    • 1
  • N. Freinkel
    • 2
  1. 1.Department of BiochemistryAgricultural Research Council Institute of Animal PhysiologyBabrahamEngland
  2. 2.Center for Endocrinology, Metabolism, and Nutrition and Departments of Medicine and BiochemistryNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations