Receptors and Second Messengers in Cell Function and Clinical Disorders

  • E. M. Brown
  • G. D. Aurbach


Cellular receptors provide an important mechanism for transmitting hormonal, immunologic, and neurophysiological information between cells. Originally defined in terms of physiological responses, receptor-mediated mechanisms are being defined in increasingly greater detail at pharmacological, physiological, and biochemical levels. Direct binding studies with a profusion of radioligands have identified binding sites in a host of tissues. It is now recognized that these binding sites are not inert entities but undergo a variety of regulatory processes in response to alterations in the hormonal milieu. Changes in receptor occupancy modify receptor-linked functions such as enzymic activity (i.e., adenylate cyclase) or ion flux. The resulting changes in “second messengers,” such as cAMP or cytosolic calcium, modulate the function of additional effector systems (e.g., protein kinase or calmodulin-linked enzymes). Phosphorylation or other modifications of specific cellular substrates change cellular function in ways characteristic of the target tissue.


Dopamine Receptor Adenylate Cyclase Cholera Toxin Guanine Nucleotide Cytosolic Calcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, R. P., 1948, A study of the adrenotropic receptors, Am. J. Physiol. 153:586–600.PubMedGoogle Scholar
  2. Albright, F., Burnett, C. H., Smith, P. H., and Parson, W., 1942, Pseudohypoparathyroidism—An example of “Seabright-Bantam” syndrome, Endocrinology 30:922–929.Google Scholar
  3. Alexander, M. C., Koweloff, E. M., Witters, L. A., Dennihy, D. T., and Avruch, J., 1979, Purification of a hepatic 123,000-dalton hormone stimulated 32P-peptide and its identification as ATP-citrate lyase, J. Biol Chem. 254:8052–8056.PubMedGoogle Scholar
  4. Almon, R. R., Andrew, C. G., and Appel, S. H., 1974, Serum globulin in myasthenia gravis: Inhibition of alpha-bungarotoxin binding to acetylcholine receptors, Science 186:55–57.PubMedGoogle Scholar
  5. Alper, S. L., Palfrey, H. C., DeRiemer, S. A., and Greengard, P., 1980, Hormonal control of protein phosphorylation in turkey erythrocytes, J. Biol. Chem. 255:11029–11039.PubMedGoogle Scholar
  6. Antman, E. A., Stone, P. H., Muller, J. E., and Braunwald, E., 1980, Calcium channel blocking agents in the treatment of cardiovascular disorders. Part I: Basic and clinical electrophysiologic effects, Ann. Intern. Med. 93:875–885.PubMedGoogle Scholar
  7. Assimacopoulos-Jeannet, F. D., Blackmore, P. F., and Exton, J. H., 1977, Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase, J. Biol. Chem. 252:2662–2669.PubMedGoogle Scholar
  8. Atlas, D., and Levitzki, A., 1977, Probing of beta-adrenergic receptors by novel fluorescent beta-adrenergic blockers, Proc. Natl. Acad. Sci. U.S.A. 74:5290–5294.PubMedGoogle Scholar
  9. Attie, M. F., Brown, E. M., Gardner, D. G., Spiegel, A. M., and Aurbach, G. D., 1980, Characterization of the dopamine-responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid hormone secretion, Endocrinology 107:1776–1781.PubMedGoogle Scholar
  10. Aurbach, G. D., and Brown, E. M., 1979, Hormone receptors, cyclic nucleotides, and control of cell function, in: Contemporary Metabolism (N. Freinkel, ed.), pp. 193–233, Plenum Medical Book Company, New York.Google Scholar
  11. Banerjee, S. P., and Kung, L. S., 1977, Beta-adrenergic receptors in the rat heart and effects of thyroidectomy, Eur. J. Pharmacol. 43:207–208.PubMedGoogle Scholar
  12. Banerjee, S. P., Sharma, V. K., and Kung, L. S., 1977, Beta-adrenergic receptors in innervated and denervated skeletal muscle, Biochim. Biophys. Acta 470:123–127.Google Scholar
  13. Banerjee, S. P., Sharma, V. K., and Khanna, J. M., 1978, Alterations in beta-adrenergic receptor binding during ethanol withdrawal, Nature 276:407–409.PubMedGoogle Scholar
  14. Bateman, D. E., and Turnbridge, W. M. G., 1979, Bromocryptine in the treatment of acromegaly, Drugs 17:359–364.PubMedGoogle Scholar
  15. Baxter, J. D., and Funder, J. W., 1979, Hormone receptors, N. Engl. J. Med. 301:1149–1161.PubMedGoogle Scholar
  16. Bell, N. H., Avery, S., Sinha, T., Clark, C. M., Jr., Allen, D. O., and Johnston, C. C., Jr., 1972, Effects of dibutyryl cyclic 3′,5′-monophosphate and parathyroid extract on calcium and phosphate metabolism in hypoparathyroidism and pseudohypoparathyroidism, J. Clin. Invest. 51:816–823.PubMedGoogle Scholar
  17. Berthelsen, S., and Pettinger, W. A., 1977, A functional basis for classification of alpha-adrenergic receptors, Life Sci. 21:595–606.PubMedGoogle Scholar
  18. Blinks, J. R., Prendergast, F. G., and Allen, D. G., 1976, Proteins as biological calcium indicators, Pharmacol. Rev. 28:1–93.PubMedGoogle Scholar
  19. Bourguignon, L. Y., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. U.S.A. 74:5031–5035.PubMedGoogle Scholar
  20. Broadus, A. E., and Thier, S. O., 1979, Metabolic basis of renal-stone disease, N. Engl. J. Med. 300:839–845.PubMedGoogle Scholar
  21. Broadus, A. E., Mahaffey, J. E. Bartter, F. C., and Neer, R. M., 1977, Nephrogenous cyclic adenosine monophosphate as a parathyroid function test, J. Clin. Invest. 60:771–783.PubMedGoogle Scholar
  22. Broadus, A. E., Dominquez, M., and Bartter, F. C., 1978, Pathophysiological studies in idiopathnic hypercalciuria: Use of an oral calcium tolerance test to characterize distinctive hypercalciuric subgroups, J. Clin. Endocrinol. 47:751–760.Google Scholar
  23. Broadus, A. E., Horst, R. L., Littledike, E. T., Mahaffey, J. E., and Rasmussen, H., 1980, Primary hyperparathyroidism with intermittent hypercalcemia: Serial observations and simple diagnosis by means of an oral calcium tolerance test, Clin. Endocrinol. (Oxf.) 12:225–235.Google Scholar
  24. Brooks, S. M., McGowan, K., Bernstein, I. L., Atteman, P., and Peagler, J., 1979, Relationship between numbers of beta-adrenergic receptors in lymphocytes and disease severity in asthma, J. Allergy Clin. Immunol. 63:401–406.PubMedGoogle Scholar
  25. Brown, C. L., Lockwood, A. H., Su, J. L., Beavo, J. A., and Steiner, A. L., 1980, Immunofluorescent localization of cyclic nucleotoide-dependent protein kinases on the mitotic apparatus of cultured cells, J. Cell. Biol. 87:336–345.Google Scholar
  26. Brown, E. M., Carroll, R. J., and Aurbach, G. D., 1977, Dopaminergic stimulation of cyclic AMP accumulation and parathyroid hormone release from dispersed bovine parathyroid cells, Proc. Natl. Acad. Sci. U.S.A. 74:4210–4213.PubMedGoogle Scholar
  27. Burt, D. R., Creese, I., and Synder, S. H., 1977, Anti-schizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain, Science 196:326–328.PubMedGoogle Scholar
  28. Butcher, F. R., and Putney, J. W., Jr., 1980, Regulation of parotid gland function by cyclic nucleotides and calcium, Adv. Cyclic Nucleotide Res. 13:215–249.PubMedGoogle Scholar
  29. Caron, M. G., Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R. J., and Labrie, F., 1978, Dopaminergic receptors in the anterior pituitary gland: Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release, J. Biol. Chem. 253:2244–2253.PubMedGoogle Scholar
  30. Caron, M. G., Srinivasan, V., Snyderman, R., and Lefkowitz, R. J., 1979a, Antibodies raised against purified beta-adrenergic receptors specifically bind beta-adrenergic ligands, Proc. Natl. Acad. Sci. U.S.A. 76:2263–2267.PubMedGoogle Scholar
  31. Caron, M. G., Srinivasan, V., Pihta, J., Kociolek, K., and Lefkowitz, R. J., 1979b, Affinity chromatography of the beta-adrenergic receptor, J. Biol. Chem. 254:2923–2927.PubMedGoogle Scholar
  32. Carpenter, G., King, L., Jr., and Cohen, S., 1978, Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro, Nature 276:409–410.PubMedGoogle Scholar
  33. Cassel, D., and Pfeuffer, T., 1978, Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. U.S.A. 75:2669–2673.PubMedGoogle Scholar
  34. Cassel, D., and Selinger, Z., 1977, Catecholamine induced release of [3H]Gpp(NH)p from turkey erythrocyte adenylate cyclase, J. Cyclic Nucleotide Res. 3:11–22.PubMedGoogle Scholar
  35. Catt, K. H., Harwood, J. P., Aguilera, G., and Dufau, M. L., 1979, Hormonal regulation in peptide receptors and target cell responses, Nature 280:109–115.PubMedGoogle Scholar
  36. Charlton, R. R., and Venter, J. C., 1980, Cell cycle specific changes in beta-adrenergic receptor concentrations in C-6 glioma cells, Biochem. Biophys. Res. Commun. 94:1221–1226.PubMedGoogle Scholar
  37. Chase, L. R., Melson, G. L., and Aurbach, G. D., 1969, Pseudohypoparathyroidism: Defective excretion of 3′,5′-AMP in response to parathyroid hormone, J. Clin. Invest. 48:1832–1844.PubMedGoogle Scholar
  38. Cherrington, A. D., Assimacopoulos, F. D., Harper, S. C., Corbin, J. D., Park, C. R., and Exton, J. H., 1976, Studies on the alpha-adrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3′5′-monophosphate and adenosine 3′,5′-monophosphate dependent protein kinase in the actions of phenylephrine in isolated hepatocytes, J. Biol. Chem. 251:5209–5218.PubMedGoogle Scholar
  39. Cheung, W. Y., 1979, Calmodulin plays a pivotal role in cellular regulation, Science 207:19–22.Google Scholar
  40. Chuang, D.-M., and Costa, E., 1979, Evidence for internalization of the recognition site of beta-adrenergic receptors during receptor subsensitivity induced by (‑)isoproterenol, Proc. Natl. Acad. Sci. U.S.A. 76:3024–3028.PubMedGoogle Scholar
  41. Coffino, P., Bourne, H. R., Friedrich, U., Hochman, J., Insel, P. A., Lemaire, I., Melmon, K. L., and Tomkins, G. M., 1976, Molecular mechanisms of cyclic AMP action: A genetic approach, Recent Prog. Horm. Res. 32:669–684.PubMedGoogle Scholar
  42. Cohen, P., Burchell, A., Foulkes, J. G., Cohen, P. T. W., Vanaman, T. C., and Nairn, A. C., 1978, Identification of the calcium-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS Lett. 92:287–293.PubMedGoogle Scholar
  43. Conti, M., Harwood, J. P., and Catt, K. H., 1977, Effect of gonadotropin-induced receptor regulation in biological responses of isolated rat luteal cells, J. Biol. Chem. 252:8869–8874.PubMedGoogle Scholar
  44. Creese, I., and Snyder, S. H., 1978, 3H-Spiroperiodol labels serotonin receptors in rat cerebral cortex and hippocampus, Eur. J. Pharmacol. 49:201–202.PubMedGoogle Scholar
  45. Creese, I., Schneider, R., and Snyder, S. H., 1977, 3H-Spiroperidol labels dopamine receptors in pituitary and brain, Eur. J. Pharmacol. 46:377–381.PubMedGoogle Scholar
  46. Creese, I., Usdin, T. B., and Snyder, S. H., 1979, Dopamine receptor binding regulated by guanine nucleotides, Mol. Pharmacol. 16:67–76.Google Scholar
  47. Cronin, M. J., Faure, N., Martial, J. A., and Weiner, R. I., 1980, Absence of high affinity dopamine receptors in GH3 cells: A prolactin-secreting clone resistent to the inhibiting action of dopamine, Endocrinology 106:718–723.PubMedGoogle Scholar
  48. Douglas, W. W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34:451–474.PubMedGoogle Scholar
  49. Downs, R. W., Jr., Spiegel, A. M, Singer, M., Reen, S., and Aurbach, G. D., 1980, Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein, J. Biol. Chem. 255:949–954.PubMedGoogle Scholar
  50. Downs, R. W., Jr., Reen, S. A., Levine, M. A., Aurbach, G. D., and Spiegel, A. M., 1981, Cholera toxin-dependent ADP-ribosylation of the adenylate cyclase regulatory protein in turkey erythrocyte membranes, Arch. Biochem. Biophys. 209:284–290.PubMedGoogle Scholar
  51. Drezner, M. K., and Burch, W. M., Jr., 1978, Altered activity of the nucleotide regulating site in the parathyroid hormone sensitive adenylate cyclase from the renal cortex of a patient with pseudohypoparathyroidism, J. Clin. Invest. 62:1222–1227.PubMedGoogle Scholar
  52. Drezner, M., Neelon, F. A., and Lebovitz, H. E., 1973, Pseudohypoparathyroidism type II: A possible defect in the reception of the cyclic AMP signal, N. Engl. J. Med. 289:1056–1060.PubMedGoogle Scholar
  53. Drezner, M. K., Neelon, F. A., Haussier, M., McPherson, H. T., and Lebovitz, H. E., 1976, 1,25-Dihydroxycholecalciferol deficiency: The probable cause of hypocalcemia and metabolic bone disease in pseudohypoparathyrodism, J. Clin. Endocrinol. Metab. 42:621–628.PubMedGoogle Scholar
  54. Dufau, M. L., Baukal, A. J., and Catt, K. J., 1980, Hormone-induced guanyl nucleotide binding and activation of adenylate cyclase in the Leydig cell, Proc. Natl. Acad. Sci. U.S.A. 77:5837–5841.PubMedGoogle Scholar
  55. Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M., and Selinger, Z., 1979, Guanosine 5′ -O-(2-thiodiphosphate), an inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions, J. Biol. Chem. 254:9829–98.PubMedGoogle Scholar
  56. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218–226.PubMedGoogle Scholar
  57. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57:71–108.PubMedGoogle Scholar
  58. Exton, J. H., 1980, Mechanisms involved in alpha-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238.E3–E12.PubMedGoogle Scholar
  59. Exton, J. H., Robison, G. A., Sutherland, E. W., and Park, C. R., 1971, Studies on the role of adenosine 3′,5′-monophosphate in the hepatic actions of glucagon and catecholamines, J. Biol. Chem. 246:6166–6177.PubMedGoogle Scholar
  60. Farfel, Z., and Bourne, H. R., 1980, Deficient activity of receptor—cyclase coupling protein in platelets of patients with pseudohypoparathyroidism, J. Clin. Endocrinol. Metab. 51:1202–1204.PubMedGoogle Scholar
  61. Farfel, Z., Brickman, A. S., Kaslow, H. R., Brothers, V. M., and Bourne, H. H., 1980,Defect of receptor—cyclase coupling protein in pseudohypoparathyroidism, N. Engl. J. Med. 31:237–242.Google Scholar
  62. Flier, J. S., Kahn, C. R., Jarrett, D. B., and Roth, J., 1977, Autoantibodies to the insulin receptor: Effect on the insulin-receptor interaction in IM-9 lymphocytes, J. Clin. Invest. 60:784–794.PubMedGoogle Scholar
  63. Foulkes, J. G., and Cohen, P., 1980, The regulation of glycogen metabolism. Purification and properties of protein phosphatase inhibitor-2 from rabbit skeletal muscle, Eur. J. Biochem. 105:195–203.PubMedGoogle Scholar
  64. Foulkes, J. G., Jefferson, L. S., and Cohen, P., 1980, The hormonal control of glycogen metabolism: Dephosphorylation of protein phosphatase inhibitor-1 in vivo in response to insulin, FEBS Lett. 24:121–124.Google Scholar
  65. Francabilla, A., Jones, A. F., and Starzl, T. E., 1978, Cyclic AMP metabolism and adenylate concentration in patients with advanced hepatic cirrhosis, Gastroenterology 75:1026–1032.Google Scholar
  66. Frei, E., and Zahler, P., 1979, Phospholipase A2 from sheep erythrocyte membranes, calcium dependence and localization, Biochim. Biophys. Acta 550:450–463.PubMedGoogle Scholar
  67. Friedler, R. M., Kreussen, W. J., Descoeudres, C., Klein, K. L., and Massry, S. G., 1978, Effect of renal vasodilation on renal cAMP, Miner. Elect, Metab. 1:216–224.Google Scholar
  68. Galant, S. P., Duriseti, L., Underwood, S., and Insel, P. A., 1978, Decreased beta-adrenergic receptors on polymorphonuclear leukocytes after adrenergic therapy, N. Engl. J. Med. 279:933–936.Google Scholar
  69. Gale, K., 1980, Chronic blockade of dopamine receptors by antipsychotic drugs enhances GABA binding in substantia nigra, Nature 283:569–570.PubMedGoogle Scholar
  70. Gill, D. M., and Meren, R., 1978, ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 75:3050–3054.PubMedGoogle Scholar
  71. Ginsberg, B. H., Cohen, R. M., Kahn, C. R., and Roth, J., 1978, Properties and partial purification of the detergent-solubilized insulin receptor, Biochim. Biophys. Acta 542:88–100.PubMedGoogle Scholar
  72. Glaubiger, G., and Lefkowitz, R. J., 1977, Elevated beta-adrenergic receptor number after chronic propranolol treatment, Biochem. Biophys. Res. Commun. 78:720–725.PubMedGoogle Scholar
  73. Glaubiger, G., Tsai, B. S., and Lefkowitz, R. J., 1978, Chronic guanethidine treatment increases cardiac beta-adrenergic receptors, Nature 273:240–242.PubMedGoogle Scholar
  74. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles, and receptor-mediated endocytosis, Nature 279:679–685.PubMedGoogle Scholar
  75. Goltzman, D., Stewart, A. F., and Broadus, A. E., 1981, Malignancy-associated hypercalcemia: Evaluation with a cytochemical bioassay for parathyroid hormone, J. Clin. Endocrinol. Metab. 53:899–904.PubMedGoogle Scholar
  76. Gopinath, R. M., and Vincenzi, F. F., 1977, Phosphodiesterase protein activator mimics red blood cell cytoplasmic activation of (calcium-magnesium) ATPase, Biochem. Biophys. Res. Commun. 77:1203–1209.PubMedGoogle Scholar
  77. Granner, D., Chase, L. R., Aurbach, G. D., and Tomkins, G. M., 1968, Tyrosine aminotransferase: Enzyme induction independent of 3′,5′-AMP, Science 162:1018–1020.PubMedGoogle Scholar
  78. Griffith, R. W., Turkalj, L, and Braun, P., 1978, Outcome of pregnancy in mothers given bromocryptine, Br. J. Clin. Pharmacol. 5:227–231.PubMedGoogle Scholar
  79. Guellaën, G., and Hanoune, J., 1979, Hepatic alpha-adrenorecptor: Specific and irreversible labeling by 3H-phenoxybenzamine, Biochem. Biophys. Res. Commun. 89:1178–1185.PubMedGoogle Scholar
  80. Harrison, L. C., Flier, J., Itin, A., Kahn, C. R., and Roth, J., 1979, Radioimmunoassay of the insulin receptor: A new probe of receptor structure and function, Science 203:544–547.PubMedGoogle Scholar
  81. Hartley, E. J., Spuhler, K., Prasad, K. N., and Seeman, P., 1980, A neuroblastoma clone which has dopamine-sensitive adenylate cyclase but which lacks stereospecific binding sites for the neuroleptic 3H-spiperone, Brain Res. 190:574–577.PubMedGoogle Scholar
  82. Harwood, J. P., and Richart, N. D., 1978, Impaired beta-adrenergic receptor coupling to adenylate cyclase in gonadotropin-desensitized luteal cells, in: Program and Abstracts of the 60th Annual Meeting of The Endocrine Society, p. 210, Williams and Wilkins, Baltimore.Google Scholar
  83. Hasselbach, W., 1964, Relaxing factor and the relaxation of muscle, Prog. Biophys. Mol. Biol. 14:167–222.Google Scholar
  84. Henderson, W. R., Shelhamer, J. H., Reingold, D. B., Smith, L. J., Evans, R. III, and Kaliner, M., 1979, Alpha-adrenergic hyperresponsiveness in asthma, N. Engl. J. Med. 300:642–647.PubMedGoogle Scholar
  85. Hirata, F., Strittmatter, W. J., and Axelrod, J., 1979, Beta-adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling, Proc. Natl. Acad. Sci. U.S.A. 76:368–372.PubMedGoogle Scholar
  86. Hoffman, B. B., DeLean, A., Wood, C. L., Schocken, D. C., and Lefkowitz, R. J., 1979, Alpha-adrenergic receptor subtypes: Quantitative assessment by ligand binding, Life Sci. 24:1739–2746.PubMedGoogle Scholar
  87. Hsueh, A. J. W., Dufau, M. L., and Catt, K. J., 1977, Gonadotropin-induced regulation of luteinizing hormone receptors and desensitization of testicular 3′,5′ cyclic AMP and testosterone responses, Proc. Natl. Acad. Sci. U.S.A. 74:592–595.PubMedGoogle Scholar
  88. Huang, F. L., and Glinsmann, W. H., 1976, Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle, Eur. J. Biochem. 70:419–426.PubMedGoogle Scholar
  89. Hyttel, J., 1978, Effects of neuroleptics on 3H-haloperidol and 3H-cis(2)-flupenthixol binding and on adenylate cyclase activity in vitro, Life Sci. 23:551–556.PubMedGoogle Scholar
  90. Jacobs, S., Chang, K.-J., and Cuatrecasas, P., 1978, Antibodies to purified insulin receptor have insulin-like activity, Science 200:1283–1284.PubMedGoogle Scholar
  91. Jakobs, K. H., Saur, W., and Schultz, G., 1976, Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine, J. Cyclic Nucleotide Res. 2:381–392.PubMedGoogle Scholar
  92. Jakobs, K. H., Saur, W., and Schultz, G., 1978, Inhibition of platelet adenylate cyclase by epinephrine requires GTP, FEBS Lett. 84:167–170.Google Scholar
  93. Jarett, L., and Seals, J. R. 1979, Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle, Science 206:1407–1408.PubMedGoogle Scholar
  94. Jarett, L., Kiechle, F. L., Popp, D. A., Kotagal, N., and Gavin, J. R. III, 1980, Differences in the effect of insulin on the generation of adipocytes and IM-9 lymphocytes of a chemical mediator which simulates the action of insulin on pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 96:735–741.PubMedGoogle Scholar
  95. Johnson, G. L., Bourne, H. R., Gleason, M. K., Coffino, P., Insel, P. A., and Melmon, K. L., 1979, Isolation and characterization of S49 lymphoma cells deficient in betaadrenergic receptors: Relation of receptor number to activation of adenylate cyclase, Mol. Pharmacol. 15:16–27.PubMedGoogle Scholar
  96. Johnson, G. L., Kaslow, H. R., Farfel, Z., and Bourne, H. R., 1980, Genetic analysis of hormone-sensitive adenylate cyclase, Adv. Cyclic Nucleotide Res. 13:1–37.PubMedGoogle Scholar
  97. Kahn, G. R., Baird, K. L., Jarrett, D. B., and Flier, J. S., 1978, Direct demonstration that receptor crosslinking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. U.S.A. 75:4209–4213.PubMedGoogle Scholar
  98. Kahn, G. R., Baird, K., Flier, J. J., Jarrett, D. B., 1977, Effects of autoantibodies to the insulin receptor on isolated adipocytes, J. Clin. Invest. 60:1094–1106.PubMedGoogle Scholar
  99. Kakiuchi, S., and Yamazaki, R., 1970, Calcium dependent phosphodiesterase activity and its activating factor from brain, Biochem. Biophys. Res. Commun. 41:1104–1110.PubMedGoogle Scholar
  100. Karliner, J. S., Barnes, P., Hamilton, C. A., and Dollery, C. T., 1979, Alpha-1-adrenergic receptors in guinea pig myocardium: Identification by binding of a new radioligand [3H] prazosin, Biochem. Biophys. Res. Commun. 90:142–149.PubMedGoogle Scholar
  101. Kaywin, P., McDonough, M., Insel, P. A., and Shattil, S. J., 1978, Platelet function in essential thrombocythemia. Decreased epinephrine responsiveness associated with a deficiency of platelet alpha-adrenergic receptors, N. Engl. J. Med. 299:505–509.PubMedGoogle Scholar
  102. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.PubMedGoogle Scholar
  103. Kebabian, J. W., and Kebabian, P. R., 1979, Lergotrile and lisuride: In vivo dopaminergic agonists which do not stimulate the presynaptic dopamine autoreceptor, Life Sci. 23:2199–2204.Google Scholar
  104. King, G. L., Kahn, C. R., Rechler, M. M., and Nissley, S. P., 1980, Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulin-like growth factor) using antibodies to the insulin receptor, J. Clin. Invest. 66:130–140.PubMedGoogle Scholar
  105. Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation—dephosphorylation of enzymes, Annu. Rev. Biochem. 48:923–960.PubMedGoogle Scholar
  106. Kretsinger, R. H., 1976, Evolution and function of calcium-binding proteins, Int. Rev. Cytol. 46:323–393.PubMedGoogle Scholar
  107. Kretsinger, R. H., 1979, The informational role of calcium in the cytosol, Adv. Cyclic Nucleotide Res. 11:1–26.PubMedGoogle Scholar
  108. Kunos, G., Vermes-Kunos, I., and Nickerson, M., 1974, Effect of thyroid state on adrenoreceptor properties, Nature 250:779–781.PubMedGoogle Scholar
  109. Lad, P. M., Nielsen, T. B., Preston, M. S., and Rodbell, M., 1980, The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes, J. Biol. Chem. 255:988–995.PubMedGoogle Scholar
  110. Langer, S. Z., 1974, Presynaptic regulation of catecholamine release, Biochem. Pharmacol 23:1793–1800.PubMedGoogle Scholar
  111. Langer, S. Z., 1977, Presynaptic receptors and their role in the regulation of transmitter release, Br. J. Pharmacol. 60:481–497.PubMedGoogle Scholar
  112. Larner, J., Galasko, G., Cheng, K., DePaoli-Roach, A. A., Huang, L., Daggy, P., and Kellogg, J., 1979, Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation, Science 21:1408–1410.Google Scholar
  113. Lee, T., and Seeman, P., 1980, Elevation of brain neuroleptic/dopamine receptors in schizophrenia, Am. J. Psychiatry 137:191–197.PubMedGoogle Scholar
  114. Lee, T., Seeman, P., Rajput, A., Farley, I., and Hornykiewicz, O., 1978, Receptor basis for dopaminergic supersensitivity in Parkinson’s disease, Nature 273:59–61.PubMedGoogle Scholar
  115. Lefkowitz, R. J., 1979, Direct binding studies of adrenergic receptors: Biochemical, physiologic, and clinical implications, Ann. Intern. Med. 91:450–458.PubMedGoogle Scholar
  116. Lefkowitz, F. J., and Williams, L. T., 1977, Catecholamine binding to the beta-adrenergic receptor, Proc. Natl. Acad. Sci. U.S.A. 74:515–519.PubMedGoogle Scholar
  117. Lefkowitz, R. J., Mullikin, D., and Caron, M. G., 1976, Regulation of beta-adrenergic receptors by guanyl-5’-yl imidodiphosphate and other purine nucleotides, J. Biol. Chem. 251:4686–4692.PubMedGoogle Scholar
  118. Lefkowitz, R. J., Mullikin, D., and Williams, L. T., 1978, A desensitized state of the beta-adrenergic receptor not associated with high-affinity agonist occupancy, Mol. Pharmacol 14:376–380.PubMedGoogle Scholar
  119. Lehninger, A. L., Carafoli, E., and Rossi, C. S., 1967, Energy linked ion movements in mitochondrial systems, Adv. Enzymol. 29:259–320.PubMedGoogle Scholar
  120. Levine, M. A., Downs, R. W., Jr., Singer, M., Marx, S. J., Aurbach, G. D., and Spiegel, A. M., 1980, Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism, Biochem. Biophys. Res. Commun. 94:1319–1324.PubMedGoogle Scholar
  121. Levine, M. A., Downs, R. W., Jr., Marx, S. J., Lasker, R., and Aurbach, G. D., 1981, Clinical and biochemical features of pseudo-hypoparathyroidism, in: Hormonal Control of Calcium Metabolism (D. V. Cohn, R. V. Talmage, and J. L. Matthews, eds.), pp. 95–101, Excerpta Medica, Amsterdam.Google Scholar
  122. Lewin, I. G., Papapoulos, S. E., Tomlinson, S., Hendy, G. N., and O’Riordan, J. H. L., 1978, Studies of hypoparathyroidism and pseudo-hypoparathyroidism, Q. J. Med. 17:522–548.Google Scholar
  123. Limas, C., and Limas, C. J., 1978, Reduced number of beta-adrenergic receptors in the myocardium of spontaneously hypertensive rats, Biochem. Biophys. Res. Commun. 83:710–714.PubMedGoogle Scholar
  124. Limas, C. J., 1979, Increased numbers of beta-adrenergic receptors in the hypertrophied myocardium, Biochim. Biophys. Acta 588:174–178.PubMedGoogle Scholar
  125. Limbird, L. E., and Lefkowitz, R. J., 1978, Agonist-induced increase in apparent beta-adrenergic receptor size, Proc. Natl. Acad. Sci. U.S.A. 75:228–232.PubMedGoogle Scholar
  126. Ludford, J. M., and Talamo, B. R., 1980, Beta-adrenergic and muscarinic receptors in developing rat parotid glands. Selective effect of neonatal sympathetic denervation, J. Biol. Chem. 255:4619–4627.PubMedGoogle Scholar
  127. Macci, A., U’Prichard, D. C., and Enna, S. J., 1980, Beta-adrenergic regulation of alpha-2-adrenergic receptors in the central nervous system, Science 207:645–647.Google Scholar
  128. Maekubo, H., Matsushima, T., Okada, F., Honma, M., and Ui, M., 1980, Anomalous plasma cyclic AMP responses to glucagon in patients with liver disease, Dig. Dis. Sci. 25:700–704.PubMedGoogle Scholar
  129. Maguire, M. E., Van Arsdale, P. M., and Gilman, A. G., 1976, An agonist-specific effect of guanine nucleotides on binding to the beta-adrenergic receptor, Mol. Pharmacol. 12:335–339.PubMedGoogle Scholar
  130. Marcus, R., Wilber, J. F., and Aurbach, G. D., 1971, Parathyroid hormone-sensitive adenyl cyclase from the renal cortex of a patient with pseudohypoparathyroidism, J. Clin. Endocrinol. Metab. 33:537–541.PubMedGoogle Scholar
  131. Marshall, J. F., and Berrios, N., 1979, Movement disorders of aged rats: reversal by dopamine stimulation, Science 206:477–479.PubMedGoogle Scholar
  132. Marx, S. J., Hershman, J. M., and Aurbach, G. D., 1971, Thyroid dysfunction in pseudohypoparathyroidism, J. Clin. Endocrinol. Metab. 33:822–828.PubMedGoogle Scholar
  133. Marx, S. J., Spiegel, A. M., Sharp, M. E., Brown, E. M., Gardner, D. G., Downs, R. W., Jr., Attie, M. F., and Stock, J. L., 1980, Adenosine 3′,5′-monophosphate response to parathyroid hormone: Familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism, J. Clin. Endocrinol. Metab. 50:546–548.PubMedGoogle Scholar
  134. McGregor, A. M., Scanlon, M. F., Hall, K., Cook, D. B., and Hall, R., 1979, Reduction in size of a pituitary tumor by bromocryptine therapy, N. Eng. J. Med. 300:291–293.Google Scholar
  135. Means, A. R., and Dedman, J. R., 1980, Calmodulin—an intracellular calcium receptor, Nature 285:73–77.PubMedGoogle Scholar
  136. Mehta, A. E., and Tolis, G., 1979, Pharmacology of bromocryptine in health and disease, Drugs 17:313–325.PubMedGoogle Scholar
  137. Mishra, R. F., Wong, Y. -W., Varmuza, S. L., and Tuff, L., 1979, Chemical lesion and drug-induced supersensitivity and subsensitivity of caudate dopamine receptors, Life Sci. 23:443–446.Google Scholar
  138. Mukherjee, A., Wong, T. M, Buja, L. M., Lefkowitz, R. J., and Willerson, J. T., 1979, Beta-adrenergic and muscarinic cholinergic receptors in canine myocardium. Effects of ischemia, J. Clin. Invest. 64:1423–1428.PubMedGoogle Scholar
  139. Mukherjee, C., Caron, M. G., and Lefkowitz, R. J., 1976, Regulation of adenylate cyclase coupled beta-adrenergic receptors by beta-adrenergic catecholamines, Endocrinology 99:347–357.PubMedGoogle Scholar
  140. Munemura, M., Cote, T. E., Tsuruta, K., Eskay, R. L., and Kebabian, J. W., 1980, The dopamine receptor in the intermediate lobe of the rat pituitary gland: pharmacological characterization, Endocrinology 107:1676–1683.PubMedGoogle Scholar
  141. Nielsen, T. B., Downs, R. W., Jr., and Spiegel, A. M., 1980, Restoration of guanine nucleotide- and fluoride-stimulated activity to an adenylate cyclase-deficient cell line with affinity purified guanine nucleotide regulatory protein, Biochem. J. 190:439–443.PubMedGoogle Scholar
  142. Northup, J. K., Sternweiss, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., and Gilman, A. G., 1980, Purification of the regulatory component of adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 77:6516–6520.PubMedGoogle Scholar
  143. Oehme, M., Kessler, M., and Simon, W., 1976, Neutral carrier calcium microelectrode, Chimia 30:204–206.Google Scholar
  144. Palacios, J. M., and Kuhar, M. J., 1980, Beta-adrenergic receptor localization by light microscopy autoradiography, Science 208:1378–1380.PubMedGoogle Scholar
  145. Parkes, D., 1979, Bromocryptine, N. Engl. J. Med. 301:873–878.PubMedGoogle Scholar
  146. Payne, M. E., and Soderling, T. R., 1980, Calmodulin-dependent glycogen synthase kinase, J. Biol. Chem. 255:8054–8056.PubMedGoogle Scholar
  147. Pfeuffer, T., 1977, GTP-binding proteins in membranes and the control of adenylate cyclase activity, J. Biol. Chem. 252:7224–7234.PubMedGoogle Scholar
  148. Pilch, P. F., and Czech, M. P., 1980, The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes, J. Biol. Chem. 255:1722–1731.PubMedGoogle Scholar
  149. Poff, D. A., Kiechle, F. L., Kotagal, N., and Jarett, L., 1980, Insulin stimulation of pyruvate dehydrogenase in a isolated plasma membrane-mitochondrial mixture occurs by activation of pyruvate dehydrogenase phosphatase, J. Biol. Chem. 255:7540–7543.Google Scholar
  150. Pointon, S. E., and Banerjee, S. P., 1979, Alpha- and beta-adrenergic receptors of the rat salivary gland: Elevation after chemical sympathectomy, Biochim. Biophys. Acta 584:231–241.PubMedGoogle Scholar
  151. Putney, J. W., Jr., 1977, Muscarinic, alpha-adrenergic, and peptide receptors regulate the same calcium influx sites in the parotid gland, J. Physiol. (Lond.) 268:139–149.Google Scholar
  152. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170:404–412.PubMedGoogle Scholar
  153. Rechler, M. M., Schilling, E. E., King, G. S., Fraioli, F., Rosenberg, A. M., Higa, O. Z., Podskalny, J. M., Grunfeld, C., Nissley, P., and Kahn, C. R., 1980, Receptor for insulin and insulin-like growth factors in disease, Adv. Biochem. Psychopharmacol. 211:489–497.Google Scholar
  154. Reed, P. W., and Lardy, H. A., 1972, A23187: A divalent cation ionophore, J. Biol. Chem. 247:6970–6977.PubMedGoogle Scholar
  155. Reuter, H., 1979, Properties of two inward membrane currents in the heart, Annu. Rev. Physiol. 41:413–424.PubMedGoogle Scholar
  156. Reuter, H., and Schulz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. (Lond.) 264:49–62.Google Scholar
  157. Reuter, H., and Seitz, N., 1968, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (Lond.) 195:451–470.Google Scholar
  158. Ritzmann, R. F., Walter, R., Bhargava, H. N., and Flexner, L. B., 1979, Blockage of narcotic-induced dopamine receptor supersensitivity by cyclo (Leu-Gly), Proc. Natl. Acad. Sci. U.S.A. 76:5995–5998.Google Scholar
  159. Roberts, J. M., Goldfien, R. D., Tsuchiya, A. M., Goldfien, A., Insel, P. A., 1979, Estrogen treatment decreases alpha-adrenergic binding sites on rabbit platelets, Endocrinology 104:722–728.PubMedGoogle Scholar
  160. Ross, E. M., and Gilman, A. G., 1977, Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interaction of solubilized components with receptor replete membranes, Proc. Natl. Acad. Sci. U.S.A. 74:3715–3719.PubMedGoogle Scholar
  161. Rudolph, S. A., and Greengard, P., 1974, Regulation of protein phosphorylation and membrane permeability by beta-adrenergic agents and cyclic adenosine 3′,5′-monophosphate in the avian erythrocyte, J. Biol. Chem. 249:5684–5687.PubMedGoogle Scholar
  162. Rudolph, S. A., Greengard, P., and Malawista, S. E., 1977a, Effects of colchicine on cyclic AMP levels in human leukocytes, Proc. Natl. Acad. Sci. U.S.A. 74:3404–3408.PubMedGoogle Scholar
  163. Rudolph, S. A., Schafer, D. E., and Greengard, P., 1977b, Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte, J. Biol. Chem. 252:7132–7139.PubMedGoogle Scholar
  164. Sabol, S. L., and Nirenberg, M., 1979, Regulation of adenylate cyclase of neuroblastoma X glioma hybrid cells by alpha-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by alpha-receptors, J. Biol. Chem. 254:1913–1920.PubMedGoogle Scholar
  165. Scarpa, A., Brinley, F. J., and Dubyak, G., 1978, Antipyrylazo III, a “middle range” calcium metallochromic indicator, Biochemistry 17:1378–1386.PubMedGoogle Scholar
  166. Schatzman, J. H., 1973, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. (Lond.) 235:551–569.Google Scholar
  167. Schleifer, L. S., Garrison, J. C., Sternweis, P. C., Northup, J. K., and Gilman, A. G., 1980, The regulatory component of adenylate cyclase from uncoupled S49 lymphoma cells differs in charge from the wild type protein, J. Biol. Chem. 10:2641–2644.Google Scholar
  168. Seals, J. R., and Jarett, L., 1980, Evidence for generation of insulin’s second messenger in a subcellular system, Proc. Natl. Acad. Sci. U.S.A. 77:77–81.PubMedGoogle Scholar
  169. Seeman, P., Tedesco, J. L., Lee, T., Chau-Wong, M., Mailer, P., Bowles, J., Whitaker, P. M., McManus, C., Tittler, M., Weinreich, P., Friend, W. C., and Brown, G. M., 1978, Dopamine receptors in the central nervous system, Fed. Proc. 37:130–136.Google Scholar
  170. Seeman, P., Woodruff, G. N., and Pont, J. A., 1979, Similar binding of 3H-ADTN and 3H-apomorphine to calf brain dopamine receptors, Eur. J. Pharmacol. 55:137–142.PubMedGoogle Scholar
  171. Shand, D. G., and Wood, A. J. J., 1978, Propranolol withdrawal syndrome—why? Circulation 58:202–203.PubMedGoogle Scholar
  172. Shanker, G., and Sharma, R. K., 1980, Characterization of ectopic alpha-adrenergic binding receptors of adrenocortical carcinoma cells, Endocrinology 106:1594–1598.PubMedGoogle Scholar
  173. Sharma, V. K., and Banerjee, S. P. 1978, Alpha-adrenergic receptors in rat heart. Effects of thyroidectomy, J. Biol. Chem. 253:5277–5279.PubMedGoogle Scholar
  174. Shear, M., Insel, P., Melmon, K. L., and Coffino, P., 1976, Agonist-specific refractoriness induced by isoproterenol, J. Biol Chem. 251:7572–7576.PubMedGoogle Scholar
  175. Sherline, P., Lynch, A., and Glinsmann, W. H., 1972, Cyclic AMP and adrenergic control of rat liver glycogen metabolism, Endocrinology 91:680–690.PubMedGoogle Scholar
  176. Singer, S. J., and Nicholson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedGoogle Scholar
  177. Smith, B. R., and Hall, R., 1974, Thyroid stimulating immunoglobulins in Graves disease, Lancet 2:427–431.PubMedGoogle Scholar
  178. Smith, C. J., Wejksnora, P. J., Warner, J. R., Rubin, C. S., and Rosen, O. M., 1979, Insulin-stimulated protein phosphorylation in 3T3-L-1 preadipocytes, Proc. Natl. Acad. Sci. U.S.A. 76:2725–2729.PubMedGoogle Scholar
  179. Sperelakis, N., and Schneider, J. A., 1976, A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell, Am. J. Cardiol. 37:1079–1085.PubMedGoogle Scholar
  180. Spiegel, A. M., Downs, R. W., Jr., and Aurbach, G. D., 1979, Separation of a guanine nucleotide regulatory unit from the adenylate cyclase complex with GTP affinity chromatography, J. Cyclic Nucleotide Res. 5:3–17.PubMedGoogle Scholar
  181. Spiegel, A. M., Eastman, S. T., Attie, M. F., Downs, R. W., Jr., Levine, M. A., Marx, S. J., Stock, J. L., Saxe, A. W., Brennan, M. F., and Aurbach, G. D., 1980, Intraoperative measurements of urinary cyclic AMP to guide surgery for primary hyperparathyroidism, N. Engl. J. Med. 303:1457–1460.PubMedGoogle Scholar
  182. Spiegel, A. M., Marx, S. J., Brennan, M. F., Brown, E. M., Downs, R. W., Jr., Gardner, D. G., Attie, M. F., and Aurbach, G. D., 1981, Parathyroid function after parathyroidectomy: Evaluation by measurement of urinary cAMP, Clin. Endocrinol. 15:65–73.Google Scholar
  183. Sporn, J. R., Harden, T. K., Wolfe, B. B., and Molinoff, P. B., 1976, Beta-adrenergic receptor involvement in 6-OH-dopamine-induced supersensitivity in rat cerebral cortex, Science 194: 624–625.PubMedGoogle Scholar
  184. Stadel, J. M., DeLean, A., and Lefkowitz, R. J., 1980, A high affinity agonist beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes, J. Biol. Chem. 255:1435–1441.Google Scholar
  185. Starke, K., Taube, H. D., and Borowski, E., 1977, Presynaptic systems in catecholaminergic transmission, Biochem. Pharmacol. 26:259–268.PubMedGoogle Scholar
  186. Sternweis, P. C., and Gilman, A. G., 1979, Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S49 lymphoma cell, J. Biol. Chem. 254:3333–3340.PubMedGoogle Scholar
  187. Stewart, A. F., Goltzman, D., Deftos, L., Visnery, A., Horst, R., Kirkwood, J., and Broadus, A., 1980a, Humoral hypercalcemia of malignancy: Further study of the mediator in vivo and in vitro, Clin. Res. 28:407A.Google Scholar
  188. Stewart, A. F., Horst, R., Deftos, L. J., Cadman, E. C., Lang, R., and Broadus, A. E., 1980b, Biochemical evaluation of patients with cancer-associated hypercalcemia, N. Engl. J. Med. 303:1377–1383.PubMedGoogle Scholar
  189. Strittmatter, W. J., Hirata, F., and Axelrod, J., 1979, Phospholipid methylation unmasks cryptic beta-adrenergic receptors in rat reticulocytes, Science 204:1205–1207.PubMedGoogle Scholar
  190. Tanaka, T., and Starke, K., 1980, Antagonist/agonist-preferring alpha-adrenoreceptors or alpha-l/alpha-2-adrenoreceptors, Eur. J. Pharmacol. 63:191–194.PubMedGoogle Scholar
  191. Sumikawa, H., Houghton, M., Emtage, J. S., Richards, B. M., and Barnard, E. A., 1981, Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes, Nature 292:862–864.PubMedGoogle Scholar
  192. Tsai, B. S., and Lefkowitz, R. J., 1979, Agonist-specific effects of guanine nucleotides on alpha-adrenergic receptors on human platelets, Mol. Pharmacol. 16:61–68.PubMedGoogle Scholar
  193. U’Prichard, D. C., and Snyder, S. H., 1979, Distinct alpha noradrenergic receptors differentiated by binding and physiological relationships, Life Sci. 24:79–88.PubMedGoogle Scholar
  194. U’Prichard, D. C., Greenberg, D. A., and Snyder, S. H., 1977, Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha-noradrenergic receptors, Mol. Pharmacol. 13:454–473.PubMedGoogle Scholar
  195. Venter, J. C., Fraser, C. M., and Harrison, L. C., 1980, Autoantibodies to beta-2-adrenergic receptors: A possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma, Science 207:1361–1363.PubMedGoogle Scholar
  196. Wass, J. A. H., Moult, P. J. A., Thorner, M. O., Dacie, J. E., Charlesworth, M., Jones, A. E., and Besser, G. M., 1979, Reduction of pituitary tumor size in patients with prolactinomas and acromegaly treated with bromocryptine with or without radiotherapy, Lancet 2:66–769.PubMedGoogle Scholar
  197. Watling, K. J., Dowling, J. E., and Iverson, L. L., 1979, Dopamine receptors in the retina may all be linked to adenylate cyclase, Nature 281:580–582.Google Scholar
  198. Werder, E. A., Fischer, J. A., Illig, R., Kind, H. P., Bernasconi, S., Fanconi, A., and Prader, A., 1978, Pseudohypoparathyroidism and idiopathic hypoparathyroidism: Relationship between serum calcium and parathyroid hormone levels and urinary cyclic adenosine 3′,5.′-monophosphate response to parathyroid extract, J. Clin. Endocnnol. Metab. 46:872–879.Google Scholar
  199. Williams, L. T., and Lefkowitz, R. J., 1976, Alpha-adrenergic receptor identification by 3H-dihydroergocryptine binding, Science 192:791–793.PubMedGoogle Scholar
  200. Williams, L. T., and Lefkowitz, R. J., 1977, Slowly reversible binding of catecholamine to a nucleotide sensitive state of the beta-adrenergic receptor, J. Biol. Chem. 252:7203–7213.Google Scholar
  201. Williams, L. T., Gore, T. B., and Lefkowitz, R. J., 1977a, Ectopic beta-adrenergic receptor sites and possible molecular basis of aberrant catecholamine responsiveness of an adrenocortical tumor adenylate cyclase, J. Clin. Invest. 59:319–324.PubMedGoogle Scholar
  202. Williams, L. T., Lefkowitz, R. J., Watanabe, A. M., Hathaway, D. P., and Besch, H. R., 1977b, Thyroid hormone regulation of beta-adrenergic receptor number, J. Biol. Chem. 252:2787–2789.PubMedGoogle Scholar
  203. Williams, L. T., Mullikin, D., and Lefkowitz, R. J., 1978, Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors, J. Biol. Chem. 253:2984–2989.PubMedGoogle Scholar
  204. Williams, R. S., and Lefkowitz, R. J., 1979, Thyroid hormone regulation of alpha-adrenergic receptors: Studies in rat myocardium, J. Cardiovasc. Pharmacol. 1:181–189.PubMedGoogle Scholar
  205. Wolff, D. J., and Brostrom, C. O., 1979, Properties and function of the calcium-dependent regulator proteins, Adv. Cyclic Nucleotide Res. 12:27–88.Google Scholar
  206. Wolfsdorf, J. L, Rosenfield, R. L., Fang, V. S., Kabayashi, R., Razdan, A. K., and Kim, M. H., 1978, Partial gonadotropin-resistance in pseudohypoparathyroidism, Acta Endocnnol. (Kbh.) 88:321–328.Google Scholar
  207. Wood, C. L., Arnett, C. D., Clarke, W. R., Tsai, B.S., and Lefkowitz, R. J., 1979, Subclassification of alpha-adrenergic receptors by direct binding studies, Biochem Pharmacol. 28:1277–1282.PubMedGoogle Scholar
  208. Wray, H. L., and Gray, R. R., 1977, Cyclic AMP stimulation of membrane phosphorylation and calcium-activated, magnesium-dependent ATPase in cardiac sarcoplasmic reticulum, Biochim. Biophys. Acta 461:441–449.PubMedGoogle Scholar
  209. Wray, H. L., Burman, K. D., Smallridge, R. C., Alford, J. P., Butler, V. M., Wright, F. D., and Wartofsky, L., 1980, Effect of 3,5,3′-triiodothyronine and 3,3′,5′-triiodothyronine administration on serum tri-, di-, and monoiodothyronines and plasma cyclic nucleotides in sheep, Endocrinology 107:130–136.PubMedGoogle Scholar
  210. Wrenn, S., Homcy, C., and Haber, E., 1979, Evidence for the beta-receptor regulation of membrane-bound catechol-O-methyltransferase activity in myocardium, J. Biol. Chem. 254:5708–5712.PubMedGoogle Scholar
  211. Yagi, K., Yazawa, M., Kakiuchi, S., Oshima, M., and Uenishi, K., 1978, Identification of an activator protein for myosin light chain kinase as a calcium-dependent modulator protein, J. Biol. Chem. 253:1338–1340.PubMedGoogle Scholar
  212. Zahniser, N. R., and Molinoff, P. B., 1978, Effect of guanine nucleotides on striatal dopamine receptors, Nature 275:453–455.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • E. M. Brown
    • 1
    • 2
  • G. D. Aurbach
    • 3
  1. 1.Harvard Medical SchoolBostonUSA
  2. 2.Endocrine-Hypertension UnitBrigham and Women’s HospitalBostonUSA
  3. 3.Metabolic Diseases BranchNational Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations