Advertisement

Neuroanatomical and Clinical Neuropsychological Changes in Aging and Senile Dementia

  • Ted L. Petit
Part of the Advances in the Study of Communication and Affect book series (ASCA, volume 8)

Abstract

What is to follow must be considered merely a temporary review of the present state of the art. Research on aging, the brain, and behavior is in an explosive state; out of what appeared a very long history of ignorance and neglect there is emerging a rapidly growing field of research. Changes are occurring so rapidly in the field that this review will probably be outdated before it reaches the press, and considering the crucial importance of the research, I hope that it will be.

Keywords

Neurofibrillary Tangle Senile Plaque Aging Brain Senile Dementia Inferior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, S. The anatomy of aging in man and animals .New York: Grune & Stratton, 1971.Google Scholar
  2. Arendt, A. Altern des Zentralnervensystems. In H. Gottfried (Ed.), Handbuch der alle gemeiner Pathologie .New York: Springer, 1972.Google Scholar
  3. Ball, M. J. Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study. Acta Neu-ropathologica, 1978, 42, 73–80.Google Scholar
  4. Ball, M. J., & Lo, P. Granulovacuolar degeneration in the aging brain and in dementia. Journal of Neuropathology and Experimental Neurology, 1977, 36, 474–487.PubMedCrossRefGoogle Scholar
  5. Blessed, G., Tomlinson, B. E., & Roth, M. The association between quantitative measures of dementia and senile changes of the cerebral gray matter of elderly subjects. British Journal of Psychiatry, 1968, 14, 797–811.CrossRefGoogle Scholar
  6. Brizzee, K. R. Gross morphometric analyses and quantitative histology of the aging brain. In J. M. Ordy & K. R. Brizzee (Eds.), Neurobiology of aging .New York: Plenum Press, 1975.Google Scholar
  7. Brizzee, K. R., Cancilla, P. A., Sherwood, N., & Timiras, P. S. The amount of distribution of pigments in neurons and glia of the cerebral cortex. Journal of Gerontology, 1969, 24, 127–135.PubMedCrossRefGoogle Scholar
  8. Brizzee, K. R., Harkin, J. C., Ordy, J. M., & Kaak, B. Accumulation and distribution of lipofuscin, amyloid and senile plaques in the aging neurons system. In H. Brody, D. Harman, & J. M. Ordy (Eds.), Aging (Vol. 1). New York: Raven, 1975.Google Scholar
  9. Brizzee, K. R., Ordy, J. M., Hansche, J., & Kaak, B. Quantitative assessment of changes in neuron and glial cell packing density and lipofuscin accumulation with age in the cerebral cortex of nonhuman primate (macaca and mulatta). In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  10. Brizzee, K. R., Ordy, J. M., & Kaak, B. Early appearance and regional differences in intraneuronal and extraneuronal lipofuscin accumulation with age in the brain of a non-human primate (macaca & mulatta). Journal of Gerontology, 1974, 29, 366–381.PubMedCrossRefGoogle Scholar
  11. Brizzee, K. R., Sherwood, N., & Timiras, P. S. A comparison of cell populations at various depth levels in cerebral cortex of young adult and aged Long-Evans rats. Journal of Gerontology, 1968, 23, 289–297.PubMedCrossRefGoogle Scholar
  12. Brody, H. Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. Journal of Comparative Neurology, 1955, 102, 511–556.PubMedCrossRefGoogle Scholar
  13. Brody, H. Aging in the vertebrate brain. In M. Rockstein (Ed.), Development and aging of the nervous system .New York: Academic Press, 1973.Google Scholar
  14. Brody, H. An examination of cerebral cortex and brainstem aging. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  15. Brody, H., & Vijayashankar, N. Cell loss with aging. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia. Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.Google Scholar
  16. Bruce, M. E., Dickinson, A. G., & Fraser, H. Cerebral amyloidosis in scrapie in the mouse: Effect of agent strain and mouse genotype. Neuropathology and Applied Neurobiology, 1976, 2, 241–278.CrossRefGoogle Scholar
  17. Bruce, M. E., & Fraser, H. Amyloid plaques in the brains of mice infected with scrapie: Morphological variation and staining properties. Neuropathology and Applied Neurobiology, 1975, 1, 189–202.CrossRefGoogle Scholar
  18. Buell, S. J., & Coleman, P. D. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science, 1979, 206, 854–856.PubMedCrossRefGoogle Scholar
  19. Buetow, D. E. Cellular content and cellular proliferation changes in the tissues and organs of the aging mammal. In I. L. Cameron & J. D. Thresher (Eds.), Cellular and molecular renewal in the mammalian body .New York: Academic Press, 1971.Google Scholar
  20. Corsellis, J. A. W. Some observations on the Purkinje cell population and on brain volume in human aging. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  21. Cragg, B. G. The density of synapses and neurons in normal, mentally defective, and aging human brains. Brain, 1975, 98, 81–90.PubMedCrossRefGoogle Scholar
  22. Dayan, A. D. Comparative neuropathology of aging studies on the brains of 47 species of vertebrates. Brain, 1971, 94, 31–32.PubMedCrossRefGoogle Scholar
  23. DeBoni, U., & Crapper McLachlan, D. R. Senile dementia and Alzheimer’s disease. A current view. Life Sciences, 27, 1–14, 1980.CrossRefGoogle Scholar
  24. Feldman, M. L. Degenerative changes in aging dendritis. Gerontologist 1974, 14 (Supp.), 36.Google Scholar
  25. Feldman, M. L. Dendritic changes in aging rat brain. Pyramidal cell dendrite length and ultrastructure. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia. Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.CrossRefGoogle Scholar
  26. Fisher, C. M. Dementia in cerebrovascular disease. In R. G. Siekert & J. P. Whisnant (Eds.), Cerebral vascular disease, Sixth Conference .New York: Grune & Stratton, 1968.Google Scholar
  27. Freund, G. Cholinergic receptor loss in brains of aging mice. Life Sciences, 1980, 26, 371–375.PubMedCrossRefGoogle Scholar
  28. Geinisman, Y., & Bondareff, W. Decrease in the number of synapses in the senescent brain: A quantitative electron microscopic analysis of the dentate gyrus of molecular layer in the rat. Mechanisms of Aging and Development, 1976, 5, 11–23.CrossRefGoogle Scholar
  29. Geinisman, Y., Bondareff, W., & Dodge, J. T. Dendritic atrophy in the dentate gyrus of the senescent rat. American Journal of Anatomy, 1977, 152, 321–330.CrossRefGoogle Scholar
  30. Gonatas, N. K., Anderson, W., & Evangelista, I. The contribution of altered synapses in the senile plaque: An electron microscopic study in Alzheimer’s dementia. Journal of Neuropathology and Experimental Neurology 1967, 26, 25–39.PubMedCrossRefGoogle Scholar
  31. Hall, T. C., Miller, A. K. H., & Corsellis, J. A. N. Variations in the human Purkinje cell population according to age and sex. Neuropathology and Applied Neurobiology, 1975, 1, 267–292.CrossRefGoogle Scholar
  32. Harms, J. W. Altern und Somatod der Zellverbandstiere. Zeitschrift für Alternforschung, 1944, 5, 73–126.Google Scholar
  33. Hasan, M., & Glees, P. Genesis and possible dissolution of neuronal lipofuscin. Gerontología, 1972, 18, 217–236.PubMedCrossRefGoogle Scholar
  34. Hasan, M., & Glees, P. Lipofuscin in monkey “lateral geniculate body.” An electron microscope study. Acta Anatomica, 1973, 84, 85–95.PubMedCrossRefGoogle Scholar
  35. Hirano, A., Demlitzer, H. M., Kurland, L. T., & Zimmerman, H. M. The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies, and rod-like structures as seen in Guam amyotrophic lateral sclerosis and Parkinson-dementia complex. Journal of Neuropathology and Experimental Neurology, 1968, 27, 167–182.PubMedCrossRefGoogle Scholar
  36. Hochschild, R. Effect of dimethylaminoethyl-p-chlorphcnoxy-acctatc on the life span of male Swiss Webster albino mice. Experimental Gerontology, 1973, 8, 177–183. (a)PubMedCrossRefGoogle Scholar
  37. Hochschild, R. Effect of dimethylaminoethanol on the life span of senile male A/J mice. Experimental Gerontology, 1973, 8, 185–192. (b)PubMedCrossRefGoogle Scholar
  38. Hopker, W. Das Altern des Nucleus dentatus. Zeitschrift für Alternsjorschung, 1951, 5, 256–277.Google Scholar
  39. Iqbal, K., Grundke-Iqbal, I., Wisniewski, H. M., Korthals, J. K., & Terry, R. D. Chemistry of neurofibrous proteins in aging. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  40. Iqbal, K., Wisniewski, H. M., Grundke-Iqbal, I., & Terry, R. D. Neurofibrillary pathology: An update. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.Google Scholar
  41. Johnson, H. A., & Erner, S. Neuron survival in the aging mouse. Experimental Gerontology, 1972, 7, 111–117.PubMedCrossRefGoogle Scholar
  42. Joynt, R. J., & Shoulson, I. Dementia. In K. E. Heilman & E. Valenstein (Eds.), Clinical neuropsychology .New York: Oxford, 1979.Google Scholar
  43. Karnaukov, V. N. On the nature and function of yellow aging pigment lipofuscin. Experimental Cell Research, 1973, 80, 479–483.CrossRefGoogle Scholar
  44. Katzman, R., Terry, R. D., & Bick, K. L. (Eds.). Alzheimer’s disease: Senile dementia and related disorders .New York: Raven Press, 1978.Google Scholar
  45. Kidd, M. Alzheimer’s disease—An electron microscopical study. Brain, 1964, 87, 307–319.PubMedCrossRefGoogle Scholar
  46. Komiya, Y. Slowing with age of the rate of slow axonal flow in bifurcating axons of rat dorsal root ganglion cells Brain Research, 1980, 183, 477–480.PubMedCrossRefGoogle Scholar
  47. Machado-Salas, J. P., & Scheibel, A. B. Lymbic system of the aged mouse. Experimental Neurology, 1979, 63, 347–355.PubMedCrossRefGoogle Scholar
  48. Mann, D. M. A., & Sinclair, K. G. A. The quantitative assessment of lipofuscin pigment, cytoplasmic RNA, and nuclear volume in senile dementia. Neuropathology and Applied Neurobiology, 1978, 4, 129–135.PubMedCrossRefGoogle Scholar
  49. McMartin, D. N., & O’Connor, J. A., Jr. Effect of age on axoplasmic transport of Cholinesterase in rat sciatic nerves. Mechanisms of Aging and Development, 1979, 10, 241–248.CrossRefGoogle Scholar
  50. Mehraein, P., Yamada, M., & Tarnowska-Dziduszko, E. Quantitative study on dendrites and dendritic spines in Alzheimer’s disease and senile dementia. In G. W. Kreutzborg (Ed.), Physiology and pathology of dendrites. Advances in neurobiology (Vol. 12) .New York: Raven Press, 1975.Google Scholar
  51. Mervis, R. Structural alterations in neurons of aged canine neocortex: A golgi study. Experimental Neurology, 1978, 62, 417–432.PubMedCrossRefGoogle Scholar
  52. Minckler, T. M., & Boyd, E. Physical growth. In J. Minckler (Ed.), Pathology of the nervous system (Vol. 1). New York: McGraw-Hill, 1968.Google Scholar
  53. Morel, F., & Wildi, E. Clinique pathologique générale et cellulaire des altérations seniles et preseniles du cerveau. Proceedings of the First International Congress on Neuropathology, Rome, 1952, 2, 237.Google Scholar
  54. Nandy, K., Further studies on the effects of centrophenoxine on the lipofuscin pigment in the neurons of senile guinea pigs. Journal of Gerontology, 1968, 23, 82–92.PubMedCrossRefGoogle Scholar
  55. Nandy, K., & Bourne, G. H. Effect of centrophenoxine on the lipofuscin pigments in the neurons of senile guinea pigs. Nature (London), 1966, 210, 313–314.CrossRefGoogle Scholar
  56. Nandy, K. & Lal, H. Neuronal lipofuscin and learning deficits in aging mammals. In P. Deniker, C. Radouco-Thomas, & A. Villenuve (Eds.), Neuropsychopharmacology .New York: Pergamon Press, 1980.Google Scholar
  57. Ordy, J. M., Kaak, B., & Brizzee, K. R. Life-span neurochemical changes in the human and non-human primate brain. In H. Brody, D. Harman, & J. B. Ordy (Eds.), Aging (Vol. 1). New York: Raven Press, 1975.Google Scholar
  58. Petit, T. L. Dendritic atrophy following colchicine-induced neuroplasmic transport disruptions: Implications for brain aging. Society for Neuroscience Abstracts, 1977, 3, 351.Google Scholar
  59. Petit, T. L., Biederman, G. B., & McMullen, P. A. Neurofibrillary degeneration, dendritic dying back, and learning-memory deficits after aluminum administration: Implications for brain aging. Experimental Neurology, 1980, 67, 152–162.PubMedCrossRefGoogle Scholar
  60. Petit, T. L., & Isaacson, R. L. Deficient brain development following colcemid treatment in postnatal rats. Brain Research, 1977, 132, 380–385.PubMedCrossRefGoogle Scholar
  61. Riga, S., & Riga, D. Effects of centrophenoxine on the lipofuscin pigments in the nervous system of old rats. Brain Research, 1974, 72, 265–275.PubMedCrossRefGoogle Scholar
  62. Roth, M., Tomlinson, B. E., & Blessed, G. Correlation between score for dementia and counts in senile plaques in cerebral gray matter of elderly subjects. Nature (London) 1966, 209, 106.CrossRefGoogle Scholar
  63. Scheibel, M. E., & Scheibel, A. B. Structural changes in the aging brain. In H. Brody, D. Harman, & J. M. Ordy (Eds.), Aging (Vol. 1). New York: Raven Press, 1975.Google Scholar
  64. Scheibel, M. E., & Scheibel, A. B. Differential changes with aging in old and new cortices. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia. Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.Google Scholar
  65. Schubert, P., & Kreutzberg, G. W. Parameters of dendritic transport. Advances in Neurology, 1975, 12, 255–268.PubMedGoogle Scholar
  66. Sherwin, I., & Seltzer, B. Senile and pre-senile dementia: A clinical overview. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia. Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.Google Scholar
  67. Siakotos, A. N., Armstrong, D., Koppang, N., & Muller, J. Biochemical significance of age pigment in neurons. In K. Nandy & I. Sherwin (Eds.), The aging brain and senile dementia. Advances in behavioral biology (Vol. 23). New York: Plenum Press, 1977.Google Scholar
  68. Terry, R. D. & Davies, P. Dementia of the Alzheimer type. Annual Review of Neuroscience, 1980, 3, 77–95.PubMedCrossRefGoogle Scholar
  69. Terry, R. D., & Wisniewski, H. The ultrastructure of the neurofibrillary tangle and the senile plaque. In G. E. W. Wolstenholm & M. O’Connor (Eds.), Ciba Foundation symposium on Alzheimer’s disease and related conditions .London: J. and A. Churchill, 1970.Google Scholar
  70. Tomlinson, B. E. Morphological brain changes in non-demented old people. In H. M. Van Praag & A. V. Kalverboer (Eds.), Aging of the central nervous system .New York: De Ervon F. Bohn, 1972.Google Scholar
  71. Tomlinson, B. E., Blessed, G., & Roth, M. Observations on the brains of nondemented old people. Journal of Neurological Science, 1968, 1, 331–356.CrossRefGoogle Scholar
  72. Tomlinson, B. E., Blessed, G., & Roth, M. Observations on the brains of demented old people, Journal of Neurological Science, 1970, 11, 205–242.CrossRefGoogle Scholar
  73. Tomlinson, B. E., & Henderson, G. Some quantitative cerebral findings in normal and demented old people. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  74. Tomlinson, B. E., & Kitchener, D. Granulovacuolar degeneration of the hippocampal pyramidal cells. Journal of Pathology, 1972, 106, 165–185.PubMedCrossRefGoogle Scholar
  75. Vaughan, D. H. Age related deterioration of pyramidal cell basal dendrites in rat auditory cortex. Journal of Comparative Neurology, 1977, 171, 501–516.PubMedCrossRefGoogle Scholar
  76. Wahren, W. Neurohistologischer Beitrag zu Fragen des Alterns. Zeitschrift für Alternsforschung, 1957, 10, 343–357.PubMedGoogle Scholar
  77. Wang, H. S. Dementia of old age. In W. L. Smith & M. Kinsbourne (Eds.), Aging and senile dementia .New York: Spectrum, 1977.Google Scholar
  78. Wells, C. E. Role of stroke in dementia. Stroke, 1978, 9, 1–3.PubMedCrossRefGoogle Scholar
  79. Wisniewski, H. M., & Terry, R. D. Reexamination of the pathogenesis of the senile plaque. In H. M. Zimmerman (Ed.), Progress in neuropathology (Vol. 2). New York: Grune & Stratton, 1973.Google Scholar
  80. Wisniewski, H. M., & Terry, R. D. Neuropathology of the aging brain. In R. D. Terry & S. Gershon (Eds.), Neurobiology of aging .New York: Raven Press, 1976.Google Scholar
  81. Wisniewski, H. M., & Terry, R. D., & Hirano, A. Neurofibrillary pathology. Journal of Neuropathology and Experimental Neurology, 1970, 29, 163–176.PubMedCrossRefGoogle Scholar
  82. Wisniewski, H. M., Ghetti, B., & Terry, R. D. Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. Journal of Neuropathology and Experimental Neurology, 1973, 32, 566–584.PubMedCrossRefGoogle Scholar
  83. Wisniewski, H. M., Bruce, M. E., & Fraser, H. Infectious etiology of neuritic (senile) plaques in mice. Science, 1975, 190, 1108–1110.PubMedCrossRefGoogle Scholar
  84. Wisniewski, H. M., Narang, H. K., & Terry, R. D. Neurofibrillary tangles of paired helical filaments. Journal’of Neurological Science, 1976, 27, 173–181.CrossRefGoogle Scholar
  85. Woodard, G. S. Clinicopathologic significance of granulovacuolar degeneration in Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology, 1962, 21, 85–91.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ted L. Petit
    • 1
  1. 1.Scarborough CollegeUniversity of TorontoTorontoCanada

Personalised recommendations