Polypyrrole: An Electrochemical Approach to Conducting Polymers

  • A. F. Diaz
  • K. K. Kanazawa


Until recent times, almost all of the known organic polymers were essentially electrically insulating, with room-temperature conductivities of 10−10 ohm−1 cm−1 or less. The desirability of having low-density, flexible, processible conductors provided the impetus for finding ways of enhancing the electronic conductivity of polymers. The electrical and optical properties of these materials depend on the electronic structure and basically on the chemical nature of the repeating unit. The general requirements of the electronic structure in these polymers were recognized and described many years ago.1 The electronic conductivity is proportional to both the density and the drift mobility of the carriers. The carrier drift mobility is defined as the ratio of the drift velocity to the electric field and reflects the ease with which carriers are propagated. Enhancing the electrical conductivity of polymers then requires an increase in the carrier mobility and the density of charge carriers. The particular importance of the delocalized π-electrons to form energy bands of high-mobility carriers was stressed early on2 and a large number of polymers were considered as having this characteristic.3 These same considerations have been discussed from a somewhat broader perspective that include polymeric charge-transfer complexes and organometallics.4 The dramatic conductivity enhancements reported recently5 in polyacetylene when treated with strong oxidants have spurred a resurgence of interest in these systems including several articles reviewing the electronic structure of these polymers.6–8


Redox Reaction Thermoelectric Power Coated Electrode Anhydrous Acetonitrile Polypyrrole Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example, Okamoto, Y., and Brenner, W., Organic Semiconductors, Reinhold Publishing, London (1964), Chapter 7.Google Scholar
  2. 2.
    Pohl, H. A., J. Polym. Sci. C 17, 13 (1967).MathSciNetGoogle Scholar
  3. 3.
    Kanda, S., and Pohl, H. A., Organic Semiconducting Polymers, J. E. Katon, Ed., Marcel Dekker, New York (1968).Google Scholar
  4. 4.
    Goodings, E. P., Chem. Rev. 5, 95 (1976).CrossRefGoogle Scholar
  5. 5.
    Chiang, C. K., Fincher, Jr., C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C., and MacDiarmid, A. G., Phys. Rev. Lett. 39, 1098 (1977).CrossRefGoogle Scholar
  6. 6.
    Whangbo, M-H., Hoffmann, R., and Woodward, R. B., Proc. R. Soc. Lond. A 366, 23 (1979).CrossRefGoogle Scholar
  7. 7.
    Fabish, T. J., Crit. Rev. Solid State Mater. Sci. 8, 383 (1979).CrossRefGoogle Scholar
  8. 8.
    Grant, P. M., and Batra, J. P., Syn. Metals 1, 193 (1979/1980).CrossRefGoogle Scholar
  9. 9.
    Ivory, P. M., Miller, G. G., Sowa, J. M., Shacklette, L. W., Chance, R. R., and Baughman, R. H., J. Chem. Phys. 71, 1506 (1979).CrossRefGoogle Scholar
  10. 10.
    Diaz, A. F., Kanazawa, K. K., and Gardini, G. P., J. Chem. Soc. Chem. Commun., 635 (1979).Google Scholar
  11. 11.
    Kanazawa, K. K., Diaz, A. F., Geiss, R. H., Gill, W. D., Kwak, J. F., Logan, J. A., Rabolt, J. F., and Street, G. B., J. Chem. Soc. Chem. Commun., 854 (1979).Google Scholar
  12. 12.
    Jozefowicz, M., Yu, L. T., Perichon, J., and Buvet, R., J. Polym. Sci. C 22, 1187 (1969).Google Scholar
  13. 13.
    Langer, J., Solid State Commun. 26, 839 (1978).CrossRefGoogle Scholar
  14. 14.
    Diaz, A., and Logan, J. A., J. Electroanal. Chem. 111, 111 (1980).CrossRefGoogle Scholar
  15. 15.
    Clarke, T. C., Kanazawa, K. K., Lee, V. Y., Rabolt, J. F., Reynolds, J. R., and Street, G. B., J. Polym. Sci., to be published.Google Scholar
  16. 16.
    Rabolt, J. F., Clarke, T. C., Kanazawa, K. K., Reynolds, J. R., and Street, G. B., J. Chem. Soc. Chem. Commun., 347 (1980).Google Scholar
  17. 17.
    Chance, R. R., Shacklette, L. W., Miller, G. G., Ivory, D. M., Sowa, J. M., Elsenbaumer, R. L., and Baughman, R. H., J. Chem. Soc. Chem. Commun., 348 (1980).Google Scholar
  18. 18.
    Yamamoto, T., Sanechika, K., and Yamamoto, A., J. Polym. Sci. Polym. Lett. Ed. 18, 9 (1980).CrossRefGoogle Scholar
  19. 19.
    Kuznesot, P. M., Wynne, K. J., Nohr, R. S., and Kenny, M. E., J. Chem. Soc. Chem. Commun., 121 (1980).Google Scholar
  20. 20.
    Dall’Olio, A., Dascola, Y., Varacca, V., and Bocchi, V., Compt. Pend. C 267, 433 (1968).Google Scholar
  21. 21.
    Diaz, A., Chem. Scrip. 17, 145 (1981).Google Scholar
  22. 22.
    Diaz, A. F., Kanazawa, K. K., Castillo, J. I., and Logan, J. A., American Chemical Society, 180th Meeting, Conductive Polymers Symposium, Las Vegas, Nevada, August 1980, Abstract Number ORPL 159.Google Scholar
  23. 23.
    Gardini, G. P., Adv. Heterocyclic Chem. 15, 67 (1973).CrossRefGoogle Scholar
  24. 24.
    Gau, S-C., Milliken, J., Pron, A., MacDiarmid, A. C., and Heeger, A. J., J. Chem. Soc. Chem. Commun., 662 (1979).Google Scholar
  25. 25.
    Diaz, A. F., Martinez, A., Kanazawa, K. K., and Salmon, M., J. Electroanal. Chem. 130, 181 (1981).CrossRefGoogle Scholar
  26. 26.
    This mechanism has been proposed for the formation of aniline blacks. See Baizer, M. M., Organic Electrochemistry, Marcel Dekker, New York (1973), p. 515.Google Scholar
  27. 27.
    Diaz, A., and Salmon, M., unpublished results.Google Scholar
  28. 28.
    Walatka, V. V., Lakes, M. M., and Perlstein, J. H., Phys. Rev. Lett. 31, 1139 (1973).CrossRefGoogle Scholar
  29. 29.
    Street, G. B., and Greene, R. L., IBM J. Res. Dev. 21, 99 (1977).CrossRefGoogle Scholar
  30. 30.
    Hornstra, J., and Van der Pauw, L. J., J. Electronics Control 7, 169 (1959).CrossRefGoogle Scholar
  31. 31.
    Kanazawa, K. K., Diaz, A. F., Gill, W. D., Grant, P. B., Street, G. B., Gardini, G. P., and Kwak, J. F., Syn. Metals 1, 329 (1980).CrossRefGoogle Scholar
  32. 32.
    Mott, N. F., Philos. Mag. 19, 835 (1969).CrossRefGoogle Scholar
  33. 33.
    Bideau, D., Troadec, J. P., Meury, J. L., Rosse, G., and Quan, Dang Tran, Rev. Phys. Appl. 31, 415 (1978).CrossRefGoogle Scholar
  34. 34.
    Seeger, K., and Gill W. D., IBM Research Rep. RJ 2339 (1979).Google Scholar
  35. 35.
    Burnay, S. G., and Pohl, H. A., J. Non Cryst. Solids 30, 221 (1978).CrossRefGoogle Scholar
  36. 36.
    See, for example, Friedman, L., and Pollak, M., Philos. Mag. B 38, 173 (1978) and references therein.CrossRefGoogle Scholar
  37. 37.
    Fincher, Jr., C. R., Peebles, D. L., Heeger, A. J., Droy, M. A., Matsumura, Y., MacDiar-mid, A. G., Shirakawa, H., and Ikeda, S., Solid State Commun. 27, 489 (1978).CrossRefGoogle Scholar
  38. 38.
    Ito, T., Shirakawa, H., and Ikado, S., J. Polym. Sci. Polym. Chem. Ed. 12, 11 (1974).CrossRefGoogle Scholar
  39. 39.
    Kanazawa, K. K., Diaz, A. F., Krounbi, M. T., and Street, G. B., J. Syn. Metals 4, 119 (1981).CrossRefGoogle Scholar
  40. 40.
    Geiss, R. H., Proceedings from the 38th Meeting of Electron Microscopy Society of America, Claitor’s Publishing Division, Baton Rouge, 1980, p. 238.Google Scholar
  41. 41.
    Nowak, R. J., Mark, Jr., H. B., MacDiarmid, A. G., and Weber, D., J. Chem. Soc. Chem. Commun., 9 (1977).Google Scholar
  42. 42.
    Nowak, R. J., Kutner, W., and Mark, Jr., H. B., J. Electrochem. Soc, 125 (1978).Google Scholar
  43. 43.
    MacDiarmid, A. G., Heeger, A. J., Kletter, M. J., Nigney, P. J., Park, Y. W., Pron, A., and Waerner, T., International Conference on Low Dimensional Synthetic Metals, Denmark, August 1980, Abstract 9.3.Google Scholar
  44. 44.
    Chen, S. N., Heeger, A. J., Kiss, Z., MacDiarmid, A. G., Gan, S. C., and Peebles, D. L., Appl. Phys. Lett. 36, 96 (1980).CrossRefGoogle Scholar
  45. 45.
    Nigrey, P. J., MacDiarmid, A. C., and Heeger, A. J., J. Chem. Soc. Chem. Commun., 594 (1979).Google Scholar
  46. 46.
    Diaz, A. F., and Castillo, J. I., J. Chem. Soc. Chem. Commun., 397 (1980).Google Scholar
  47. 47.
    Wrighton, M. S., Austin, R. G., Bocarsly, A. B., Bolts, J. M., Haas, O., Legg, K. P., Nadjo, L., and Palazzotto, M., J. Electroanal. Chem. 87, 429 (1978).CrossRefGoogle Scholar
  48. 48.
    Merz, A., and Bard, A. J., J. Am. Chem. Soc. 100, 3222 (1978).CrossRefGoogle Scholar
  49. 49.
    Oyama, N., and Anson, F., J. Electrochem. Soc. 127, 640 (1980).CrossRefGoogle Scholar
  50. 50.
    Kerr, J. B., Miller, L. L., and Van de Mark, M. R., J. Am. Chem. Soc. 102, 3383 (1980).CrossRefGoogle Scholar
  51. 51.
    Kaufman, F. B., Schroeder, A. H., Engler, E. M., and Patel, V. V., Appl. Phys. Lett. 36, 422 (1980).CrossRefGoogle Scholar
  52. 52.
    Hubbard, A. T., and Anson, F. C., Anal. Chem. 58, (1966).Google Scholar
  53. 53.
    Laviron, E., Bull. Soc. Chem. France, 3717 (1967).Google Scholar
  54. 54.
    Laviron, E., J. Electroanal. Chem. 39, 1 (1972).CrossRefGoogle Scholar
  55. 55.
    Brown, A. P., and Anson, F. C., Anal. Chem. 49, 1589 (1977).CrossRefGoogle Scholar
  56. 56.
    Smith, D. F., William, K., Kuo, K., and Murray, R. W., J. Electroanal. Chem. 95, 217 (1979).CrossRefGoogle Scholar
  57. 57.
    Diaz, A. F., Crowley, J. I., Bargon, J., Gardini, G. P., and Torrance, J. B., J. Electroanal. Chem. 121, 355 (1981).CrossRefGoogle Scholar
  58. 58.
    Diaz, A. F., Castillo, J. I., Logan, J. A., and Lee, W. Y., J. Electroanal. Chem. 129, 115 (1981).CrossRefGoogle Scholar
  59. 59.
    Genies, E. M., Diaz, A. F., and Laviron, E., unpublished results.Google Scholar
  60. 60.
    Diaz, A., Castillo, J., Kanazawa, K. K., Logan, J. A., Salmon, M., and Fajardo, O. 133, 237 (1981).Google Scholar
  61. 61.
    Salmon, M., Diaz, A. F., Waltman, R., and Bargon, J., unpublished results.Google Scholar
  62. 62.
    Chien, J. C. W., and Karasz, F. E., The Electrochemical Society, 157th Meeting, May 11-16, 1980, Abstract 56.Google Scholar
  63. 63.
    Gibson, H. W., Bailey, F. C., Epstein, A. J., Rommelmann, H., and Pochan, J. M., J. Chem. Soc. Chem. Commun., 426 (1980).Google Scholar
  64. 64.
    Diaz, A., Salmon, M., Logan, J. A. and Krounbi, M., unpublished results.Google Scholar
  65. 65.
    Noufi, R., Tench, D., and Warren, L. F., J. Electrochem. Soc. 127, 2310 (1980).CrossRefGoogle Scholar
  66. 66.
    Noufi, R., Frank, A. J., and Nozik, A. J., J. Am. Chem. Soc. 103, 1849 (1981).CrossRefGoogle Scholar
  67. 67.
    Diaz, A., U.S. Patent Application, 1980.Google Scholar
  68. 68.
    Diaz, A. F., Vasquez, J. M., and Martinez, A., IBM J. Res. Develop. 25, 42 (1981).CrossRefGoogle Scholar
  69. 69.
    Murray, R. W., Ace. Chem. Res. 13, 135 (1980).CrossRefGoogle Scholar
  70. 70.
    Snell, K. D., and Keenan, A. G., Chem. Soc. Rev. 8, 259 (1979).CrossRefGoogle Scholar
  71. 71.
    Diaz, A. F., Lee, W. Y., Logan, A., and Green, D. C., J. Electroanal. Chem. 108, 377 (1980).CrossRefGoogle Scholar
  72. 72.
    MacDiarmid, A. G., and Heeger, A. J., The Electrochemical Society, 157th Meeting, Organic Metals and Semiconductors Symposium, St. Louis, Mo., May 1980, Abstract 55.Google Scholar
  73. 73.
    Diaz, A. F., and Clarke, T. C., J. Electroanal. Chem. 111, 115 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. F. Diaz
    • 1
  • K. K. Kanazawa
    • 1
  1. 1.IBM Research LaboratorySan JoséUSA

Personalised recommendations