Advertisement

Molecular Basis of Self/Non-self Discrimination in the Invertebrata

  • Peter L. Ey
  • Charles R. Jenkin

Abstract

In 1907 Reudiger and Davis claimed that hemolymph from several different species of invertebrates promoted the ingestion of bacteria by human polymorphonuclear leukocytes and suggested on this basis that invertebrates may possess factors (opsonins) which play an important role in enchancing phagocytosis. This particular field lay relatively dormant for almost 60 years until Tripp (1966) showed in vitro that hemolymph from the oyster Crassostrea virginica increased the rate of phagocytosis of erythrocytes by amebocytes from this animal. Two years later Stuart (1968) found that the blood cells of the octopus Eledone cirrosa would phagocytose erythrocytes only if they had been pretreated with hemolymph. Unfortunately, in neither investigation was the specificity of these factors investigated.

Keywords

Human Erythrocyte Horseshoe Crab Sheep Erythrocyte Hemagglutinating Activity Helix Pomatia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, R. T., and Weinheimer, P. F., 1974, Hemagglutinins: Primitive receptor molecules operative in invertebrate defense mechanisms, Contemp. Top. Immunobiol. 4:271.CrossRefGoogle Scholar
  2. Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., 1969, Physical and chemical characterization of an oyster hemagglutinin, J. Biol. Chem. 15:4128.Google Scholar
  3. Acton, R. T., Weinheimer, P. F., and Niedermeier, W., 1973, The carbohydrate composition of invertebrate hemagglutinin subunits isolated from the lobster Panulirus argus and the oyster Crassostrea virginica, Comp. Biochem. Physiol. B 44:185.Google Scholar
  4. Amirante, G. A., 1976, Production of heteroagglutinins in haemocytes of Leucophaea maderae L., Experientia 32:526.PubMedCrossRefGoogle Scholar
  5. Anderson, R. S., 1971, Cellular responses to foreign bodies in the tunicate Molgula manhattensis (DeKay), Biol. Bull. 141:91.CrossRefGoogle Scholar
  6. Anderson, R. S., and Good, R. A., 1975, Naturally-occurring hemagglutinin in a tunicate Halocynthia pyriformis, Biol. Bull. 148:357.PubMedCrossRefGoogle Scholar
  7. Anderson, R. S., and Good, R. A., 1976, Opsonic involvement in phagocytosis by mollusk hemocytes, J. Invertebr. Pathol. 27:57.PubMedCrossRefGoogle Scholar
  8. Anderson, R. S., Day, N. K. B., and Good, R. A., 1972, Specific haemagglutinin and a modulator of complement in cockroach haemolymph, Infect. Immun. 5:55.PubMedGoogle Scholar
  9. Anderson, R. S., Holmes, B., and Good, R. A., 1973, In vitro bactericidal capacity of Blaberus craniifer haemocytes, J. Invertebr. Pathol. 22:127.PubMedCrossRefGoogle Scholar
  10. Arimoto, R., and Tripp, M. R., 1977, Characterization of a bacterial agglutinin in the hemolymph of the hard clam, Mercenaria mercenaria, J. Invertebr. Pathol. 30:406.CrossRefGoogle Scholar
  11. Baldo, B. A., and Uhlenbruck, G., 1975a, Purification of tridacnin, a novel anti-β-(1,6)-digalactobiose precipitin from the haemolymph of Tridacna maxima (Röding), FEBS Lett. 55:25.PubMedCrossRefGoogle Scholar
  12. Baldo, B. A., and Uhlenbruck, G., 1975b, Tridacnin, a potent anti-galactan precipitin from the haemolymph of Tridacna maxima (Röding), Adv. Exp. Med. Biol. 64:3.PubMedGoogle Scholar
  13. Baldo, B. A., Uhlenbruck, G., and Steinhausen, G., 1977, Anti-galactan agglutinins from the marine sponge Axinella polypoides (Schmidt), Biol. Zentralbl. 96:723.Google Scholar
  14. Baldo, B. A., Sawyer, W. H., Stick, R. V., and Uhlenbruck, G., 1978, Purification and characterization of a galactan-reactive agglutinin from the clam Tridacna maxima (Röding) and a study of its combining site, Biochem. J. 175:467.PubMedGoogle Scholar
  15. Bancroft, F. W., 1903, Variation and fusion of colonies in compound ascidians, Proc. Calif. Acad. Sci. 3rd Ser. 3:137.Google Scholar
  16. Bang, F. B., 1956, A bacterial disease of Limulus polyphemus, Bull. Johns Hopkins Hosp. 98:325.PubMedGoogle Scholar
  17. Bayne, C. J., 1974, On the immediate fate of bacteria in the land snail Helix, Contemp. Top. Immunobiol. 4:37.CrossRefGoogle Scholar
  18. Bayne, C. J., and Kime, J. B., 1970, In vivo removal of bacteria from the hemolymph of the land snail Helix pomatia (Pulmonata: Stylommatophora), Malacol. Rev. 3:103.Google Scholar
  19. Bernheimer, A. W., 1952, Haemagglutinins in caterpillar blood, Science 115:150.PubMedCrossRefGoogle Scholar
  20. Berrill, N. J., 1950, The Tunicata, The Ray Society, Bernard Quaritch Ltd., London.Google Scholar
  21. Berrill, N. J., 1955, The Origin of Vertebrates, Oxford University Press, London.Google Scholar
  22. Bhatia, H. M., Boyd, W. C., and Brown, R., 1967, Serological and immunochemical studies of snail (Otala lactea) anti-A: A simple purification method, Transfusion 7:53.PubMedCrossRefGoogle Scholar
  23. Bhatia, H. M., Kim, Y. C., and Boyd, W. C., 1968, Serological and immunochemical studies on the snail (Otala lactea), Vox Sang. 14:170.PubMedCrossRefGoogle Scholar
  24. Boyd, W. C., and Brown, R., 1965, A specific agglutinin in the snail Otala lactea (Helix), Nature (London) 208:593.CrossRefGoogle Scholar
  25. Boyd, W. C., Brown, R., and Boyd, L. C., 1966, Agglutinins for human erythrocytes in molluscs, J. Immunol. 96:301.PubMedGoogle Scholar
  26. Boyden, S. V., 1966, Natural antibodies and the immune response, Adv. Immunol. 5:1.PubMedCrossRefGoogle Scholar
  27. Brahmi, Z., and Cooper, E. L., 1974, Characterization of the agglutinin in the scorpion, Androctonus australis, Contemp. Top. Immunobiol. 4:261.CrossRefGoogle Scholar
  28. Bretting, H., 1973, Serologische und immunelektrophoretische Untersuchungen über zwei Agglutinine aufgefunden in den Schwämmen Aaptos papillata (Keller) und Axinella polypoides (Schmidt), Z. Immunitaetsforsch. 146:239.Google Scholar
  29. Bretting, H., and Kabat, E. A., 1976, Purification and characterisation of the agglutinins from the sponge Axinella polypoides and a study of their combining sites, Biochemistry 15:3228.PubMedCrossRefGoogle Scholar
  30. Bretting, H., and Renwrantz, L., 1973, Investigations of invertebrates of the Mediterranean Sea with regard to their contents of haemagglutinins, Z. Immunitaetsforsch. 145:242.Google Scholar
  31. Bretting, H., and Renwrantz, L., 1974, Further investigations of the sponge hemagglutinins from Aaptos papillata and Axinella polypoides, Z. Immunitaetsforsch. 147:250.Google Scholar
  32. Bretting, H., Kabat, E. A., Liao, J., and Pereira, M. E. A., 1976, Purification and characterisation of the agglutinins from the sponge Aaptos papillata and a study of their combining sites, Biochemistry 15:5029.PubMedCrossRefGoogle Scholar
  33. Bretting, H., Kalthoff, H., and Fehr, S., 1978, Studies on the relationship between lectins from Axinella polypoides agglutinating bacteria and human erythrocytes, J. Invertebr. Pathol. 32:151.PubMedCrossRefGoogle Scholar
  34. Brown, R., Almodovar, L. R., Bhatia, H. M., and Boyd, W. C., 1968, Blood group specific agglutinins in invertebrates, J. Immunol. 100:214.PubMedGoogle Scholar
  35. Cantacuzène, J., 1919a, Anticorps normaux et expérimentaux chez qualques invertébrés marins, C.R. Soc. Biol. 82:1087.Google Scholar
  36. Cantacuzène, J., 1919b, Etude d’une infection expérimentale chez Ascidia mentula, C.R. Soc. Biol. 82:1019.Google Scholar
  37. Cantacuzène J., 1923, in: Célébration du 75 ème anniversaire de la Fondation de la Société de Biologie, p. 48, Masson, Paris.Google Scholar
  38. Cheng, T. C., and Sanders, B. G., 1962, Internal defense mechanisms in molluscs and an electrophoretic analysis of a naturally occurring serum haemagglutinin in Viviparus malleatus Reeve, Proc. Penn. Acad. Sci. 36:72.Google Scholar
  39. Coffaro, K., 1978, Clearance of bacteriophage T4 in the sea urchin Lytechinus pictus, J. Invertebr. Pathol. 32:384.CrossRefGoogle Scholar
  40. Cohen, E., 1968, Immunologic observations of the agglutinins of the haemolymph of Limulus polyphemus and Birgus latro, Trans. N.Y. Acad. Sci. 20:427.Google Scholar
  41. Cohen, E., Ilodi, G. H. U., Brahmi, Z., and Minowada, J., 1979, The nature of cellular agglutinins of Androctonus australis (Saharan scorpion) serum, Dev. Comp. Immunol. 3:429.PubMedCrossRefGoogle Scholar
  42. Coombe, D. R., Ey, P. L., Schlüter, S. F., and Jenkin, C. R., 1981, An agglutinin in the haemolymph of an ascidian promoting adhesion of sheep erythrocytes to mouse macrophages, Immunology 42:661.PubMedGoogle Scholar
  43. Coombe, D. R., Schlüter, S. F., Ey, P. L., and Jenkin, C. R., 1982, Identification of the HA-2 agglutinin in the haemolymph of the ascidian Botrylloides leachii as the factor promoting adhesion of sheep erythrocytes to mouse macrophages, Dev. Comp. Immunol., 6:65.PubMedCrossRefGoogle Scholar
  44. Coombe, D. R., Ey, P. L., and Jenkin, C. R., 1982, Haemagglutinin levels in haemolymph from the colonial ascidian Botrylloides leachii following injection with sheep or chicken erythrocytes, Aust. J. Exp. Med. Sci. 60: (in press).Google Scholar
  45. Cooper, E. L., Lemni, C. A. E., and Moore, T. C., 1974, Agglutinins and cellular immunity in earthworms, Ann. N.Y. Acad. Sci. 234:34.PubMedCrossRefGoogle Scholar
  46. Cornick, J. W., and Stewart, J. E., 1973, Partial characterisation of a natural agglutinin in the haemolymph of the lobster (Homarus americanus), J. Invertebr. Pathol. 21:255.PubMedCrossRefGoogle Scholar
  47. Crichton, R., and Lafferty, K. J., 1975, The discriminatory capacity of phagocytic cells in the chiton (Liolophura gaimardi), Adv. Exp. Med. Biol. 64:89.PubMedGoogle Scholar
  48. Crichton, R., Killby, V. A. A., and Lafferty, K. J., 1973, The distribution and morphology of phagocytic cells in the chiton Liolophura gaimardi, Aust. J. Exp. Biol. Med. Sci. 51:357.PubMedCrossRefGoogle Scholar
  49. Cushing, J. E., Calaprice, N. L., and Trump, G., 1963, Blood group reactive substances in some marine invertebrates, Biol. Bull 125:69.CrossRefGoogle Scholar
  50. Dodd, R. Y., Maclennan, A. P., and Hawkins, D. C., 1968, Haemagglutinins from marine sponges, Vox Sang. 15:386.PubMedCrossRefGoogle Scholar
  51. Donlon, W. C., and Wemyss, C. T., 1976, Analysis of the haemagglutinin and general protein element of the haemolymph of the West Indian leaf cockroach, Blaberus craniifer, J. Invertebr. Pathol. 28:191.CrossRefGoogle Scholar
  52. Feir, D., and Waltz, M. A., 1964, An agglutinating factor in insect haemolymph, Ann. Entomol. Soc. Am. 57:388.Google Scholar
  53. Fernández-Morán, H., Marchalonis, J. J., and Edelman, G. M., 1968, Electron microscopy of a hemagglutinin from Limulus polyphemus, J. Mol. Biol. 32:467.PubMedCrossRefGoogle Scholar
  54. Finstad, C. L., Litman, G. W., Finstad, J., and Good, R. A., 1972, The evolution of the immune response. XIII. The characterization of purified erythrocyte agglutinins from two invertebrate species, J. Immunol. 108:1704.PubMedGoogle Scholar
  55. Finstad, C. L., Good, R. A, and Litman, G. W., 1974, The erythrocyte agglutinin from Limulus polyphemus hemolymph: Molecular structure and biological function, Ann. N.Y. Acad. Sci. 234:170.PubMedCrossRefGoogle Scholar
  56. Fischer, K., Poschmann, A., Reuther, K., and Prokop, O., 1972. Über das gleichzeitige Vorkommen von “Antigen” und “Antikörper” bei Schnecken: Autoantikörper oder Transportmechanismus?, Immun-Information 2:20.Google Scholar
  57. Form, D. M., Warr, G. W., and Marchalonis, J. J., 1979, Isolation and characterization of a lectin from the hemolymph of a tunicate, Halocynthia pyriformis, Fed. Proc. 38:934.Google Scholar
  58. Freeman, G., 1970, Transplantation specificity in echinoderms and lower chordates, Transplant. Proc. 2:236.PubMedGoogle Scholar
  59. Fuke, M. T., and Sugai, T., 1972, Studies on the naturally occurring hemagglutinin in the coelomic fluid of an ascidian, Biol. Bull. 143:140.CrossRefGoogle Scholar
  60. Garstang, W., 1928, The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata, Q. J. Microsc. Sci. 72:51.Google Scholar
  61. Gibb, B., Zahn, I., and Scheibe, E., 1967, Immunhämatologische Untersuchungen an Teichmuscheln (Anodonta). I. Blutgruppenaktive Substanzen und Agglutinine, Z. Immunitaetsforsch. 133:385.Google Scholar
  62. Gilbertson, D. E., and Etges, F. J., 1967, Haemagglutinins in the haemolymph of planorbid snails, Ann. Trop. Med. Parasitol. 61:144.PubMedGoogle Scholar
  63. Gold, E. R., and Balding, P., 1975, Receptor-Specific Proteins: Plant and Animal Lectins, Excerpta Medica, Amsterdam.Google Scholar
  64. Gold, E. R., and Thompson, T. E., 1969a, Serological differences between related species of snails. I. Revealed by reverse passive agglutination tests, Vox Sang. 16:63.PubMedCrossRefGoogle Scholar
  65. Gold, E. R., and Thompson, T. E., 1969b, Serological differences between related species of snails. II. Revealed by haemolysis tests, agglutination tests with tumour cells and content of B-like substances, Vox Sang. 16:119.PubMedCrossRefGoogle Scholar
  66. Gold, E., Phelps, C. F., Khalap, S., and Balding, P., 1974, Observations on Axinella sp. haemag-glutinins, Ann. N.Y. Acad. Sci. 234:122.PubMedCrossRefGoogle Scholar
  67. Goldstein, I. J., and Hayes, C. E., 1978, The lectins: Carbohydrate-binding proteins of plants and animals, Adv. Carbohydr. Chem. Biochem. 35:127.PubMedCrossRefGoogle Scholar
  68. Grace, H. J., 1969, A potent snail haemagglutinin with anti-A specificity, J. Forensic Med. 16:100.PubMedGoogle Scholar
  69. Habets, L., Vieth, U. C., and Hermann, G., 1979, Isolation and new biological properties of Arion empiricorum lectin, Biochim. Biophys. Acta 582:154.PubMedCrossRefGoogle Scholar
  70. Haferland, W., Kim, Z., Uhlenbruck, G., and Nelson, D. S., 1967, Zur Frage der Einheitlichkeit von anti-AhelZ. Immunitaetsforsch. 132:93.Google Scholar
  71. Hall, J. L., and Rowlands, D. T., 1974a, Heterogeneity of lobster agglutinins. I. Purification and physiochemical characterisation, Biochemistry 13:821.PubMedCrossRefGoogle Scholar
  72. Hall, J. L., and Rowlands, D. T., 1974b, Heterogeneity of lobster agglutinins. II. Specificity of agglutinin-erythrocyte binding, Biochemistry 13:828.PubMedCrossRefGoogle Scholar
  73. Hammarström, S., 1972, Purification and properties of Helix pomatia A hemagglutinin, Methods Enzymol. 28B:368.CrossRefGoogle Scholar
  74. Hammarström, S., 1973, Binding of Helix pomatia A hemagglutinin to human erythrocytes and their cells: Influence of multivalent interaction on affinity, Scand. J. Immunol. 2:53.PubMedCrossRefGoogle Scholar
  75. Hammarström, S., 1974, Structure, specificity, binding properties, and some biological activities of a blood group A-reactive hemagglutinin from the snail Helix pomatia, Ann. N.Y. Acad. Sci. 234:183.PubMedCrossRefGoogle Scholar
  76. Hammarström, S., and Kabat, E. A., 1969, Purification and characterization of a blood-group A reactive hemagglutinin from the snail Helix pomatia and a study of its combining site, Biochemistry 8:2696.PubMedCrossRefGoogle Scholar
  77. Hammarström, S., and Kabat, E. A., 1971, Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia, Biochemistry 9:1684.Google Scholar
  78. Hammarström, S., Lindberg, A. A., and Robertsson, E. S., 1972a, Precipitation of lipopolysaccharides from rough mutants of Salmonella typhimurium by an A hemagglutinin from Helix pomatia, Eur. J. Biochem. 25:274.PubMedCrossRefGoogle Scholar
  79. Hammarström, S., Westöö, A., and Björk, I., 1972b, Subunit structure of Helix pomatia A hemagglutinin, Scand. J. Immunol. 1:295.PubMedCrossRefGoogle Scholar
  80. Harm, H., and Renwrantz, L., 1980, The inhibition of serum opsonins by a carbohydrate and the opsonizing effect of purified agglutinin on the clearance of nonself particles from the circulation of Helix pomatia, J. Invertebr. Pathol. 36:64.CrossRefGoogle Scholar
  81. Hartman, A. L., Campbell, P. A., and Abel, C. A., 1978, An improved method for the isolation of lobster lectins, Dev. Comp. Immunol. 2:617.PubMedCrossRefGoogle Scholar
  82. Hildemann, W. H., and Reddy, A. L., 1973, Phylogeny of immune responsiveness: Marine invertebrates, Fed. Proc. 12:2188.Google Scholar
  83. Hilgard, H. R., and Phillips, J. H., 1968, Sea urchin response to foreign substances, Science 161:1243.PubMedCrossRefGoogle Scholar
  84. Hilgard, H. R., Hinds, W. E., and Phillips, J. H., 1967, The specificity of uptake of foreign proteins by coelomocytes of the purple sea urchin, Comp. Biochem. Physiol. 23:815.PubMedCrossRefGoogle Scholar
  85. Hilgard, H. R., Wander, R. H., and Hinds, W. E., 1974, Specific receptors in relation to the evolution of immunity, Contemp. Top. Immunobiol. 4:151.CrossRefGoogle Scholar
  86. Ishiyama, I., and Takatsu, A., 1970, Anti-A haemagglutinin from the garden snail Euhadra per-iomphala: Inhibition by N-acetyl-D-galactosamine and N-acetyl-D-glucosamine, Vox Sang. 19:522.PubMedCrossRefGoogle Scholar
  87. Ishiyama, I., and Uhlenbruck, G., 1971, On the nature of the anti-dextran activity of the Helix pomatia “anti-A agglutinin, Z. Naturforsch. Teil B 26:1198.Google Scholar
  88. Ishiyama, I., and Uhlenbruck, G., 1972, Some problems concerning the adsorption mechanism of anti-A agglutinins from Helix pomatia onto Sephadex G-200, Z. Immunitaetsforsch. 143:147.Google Scholar
  89. Ishiyama, I., Takatsu, A., Uhlenbruck, G., Reifenberg, U., Schnitzler, S., and Prokop, O., 1971, Serological behaviour of an “incomplete and superagglutina ting” anti-A from the snail Helix pomatia, Z. Naturforsch. Teil B 26:171.Google Scholar
  90. Ishiyama, I., Uhlenbruck, G., and Hermann, G., 1972, Isolation of an anti-A agglutinin from Helix aspera, Blut 24:178.PubMedCrossRefGoogle Scholar
  91. Ishiyama, I., Dietz, W., and Uhlenbruck, G., 1973, Comparative studies of anti-A agglutinins from various snails of the genus Helix (Helix potnatia and Helix aspersa), Comp. Biochem. Physiol B 44:529.PubMedGoogle Scholar
  92. Ishiyama, I., Mukaida, M., and Takatsu, A., 1974, Hemagglutinins and enzyme inhibitions: Comparative studies on the reactivity of anti-A agglutinins of Helix pomatia and Euhadra callizona amaliae, Ann. N.Y. Acad. Sci. 234:75.PubMedCrossRefGoogle Scholar
  93. Jeffrey, P. D., Shaw, D. C., and Treacy, G. B., 1978, Hemocyanin from the Australian freshwater crayfish Cherax destructor: Characterization of a dimeric subunit and its involvement in the formation of the 25 S component, Biochemistry 17:3078.PubMedCrossRefGoogle Scholar
  94. Jenkin, C. R., 1976, Factors involved in the recognition of foreign material by phagocytic cells from invertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 80–94, Blackwell, Oxford.Google Scholar
  95. Jenkin, C. R., and Hardy, D., 1975, Recognition factors of the crayfish and the generation of diversity. Adv. Exp. Med. Biol. 64:55.PubMedGoogle Scholar
  96. Jenkin, C. R., and Rowley, D., 1970, Immunity in invertebrates. The purification of a haemagglutinin to rat and rabbit erythrocytes from the haemolymph of the Murray mussel (Velesunio ambiguus), Aust. J. Exp. Biol. Med. Sci. 48:129.PubMedCrossRefGoogle Scholar
  97. Johnson, H. M., 1964, Human blood group Ax specific agglutinin of the butter clam Saxidomus giganteus, Science 146:548.PubMedCrossRefGoogle Scholar
  98. Johnson, P. T., 1969, The coelomic elements of sea urchins (Strongylocentrotus). III. In vitro reaction to bacteria, J. Invertebr. Pathol. 13:42.PubMedCrossRefGoogle Scholar
  99. Johnson, P. T., and Chapman, F. A., 1970, Comparative studies on the in vitro response of bacteria to invertebrate body fluids. II. Aplysia californica (sea hare) and Ciona intestinalis (Tunicate), J. Invertebr. Pathol. 16:259.CrossRefGoogle Scholar
  100. Johnson, P. T., and Chapman, F. A., 1971, Comparative studies on the in vitro response of bacteria to invertebrate body fluids. III. Stichopus tremulus (sea cucumber) and Dendraster excentricus (sand dollar), J. Invertebr. Pathol. 17:94.CrossRefGoogle Scholar
  101. Kaplan, R., Li, S. S. L., and Kehoe, J. H., 1977, Molecular characterisation of limulin, a sialic acid binding lectin from the haemolymph of the horseshoe crab, Limulus polyphemus, Biochemistry 16:4297.PubMedCrossRefGoogle Scholar
  102. Khalap, S., Thompson, T. E., and Gold, E. R., 1970, Haemagglutination and haemagglutination inhibition reactions of extracts from snails and sponges. I, Vox Sang. 18:501.PubMedCrossRefGoogle Scholar
  103. Khalap, S., Thompson, T. E., and Gold, E. R., 1971, Haemagglutination and haemagglutination inhibition reactions of extracts from snails and sponges. II. Vox Sang. 20:1150.CrossRefGoogle Scholar
  104. Khalap, S., Phelps, C. F., Fudenberg, H. H., and Gold, E. R., 1972, Separation of haemagglutinins from haemolysins in extracts of the albumin gland of Helix aspersa, Vox Sang. 23:218.PubMedCrossRefGoogle Scholar
  105. Kilias, R., Schnitzler, S., Kothbauer, H., Stober, D., and Prokop, O., 1972, Further investigations on haemagglutinins in pulmonate snails (haemagglutinin tests on four more species, comparative biotope studies with previously investigated species, and tests on organs of Helix pomatia Linnaeus), Z. Immunitaetsforsch. 144:157.Google Scholar
  106. Kim, S., Uhlenbruck, G., Prokop, O., and Schlesinger, D., 1966, Über die B Substanz und das anti-A von Helix pomatia, Z. Immunitaetsforsch. 130:290.Google Scholar
  107. Knobloch, W., Knobloch, I., Vogt, W. E., Schnitzler, S., and Böttger, M., 1970, Untersuchungen über die Isolierung und Reindarstellung eines Agglutinins aus der Eiweissdrüse der Helix pomatia, Z. Immunitaetsforsch. 139:119.Google Scholar
  108. Köhler, W., and Prokop, O., 1967, Agglutination von Streptokokken der Gruppe C durch ein Agglutinin aus Helix pomatia, Z. Immunitaetsforsch. 133:50.Google Scholar
  109. Kothbauer, H., 1970, Die Bedeutung von anti-Ahp, einem Agglutinin aus der Eiweissdrüse der Weinbergschnecke (Helix pomatia), Oecologie (Berlin) 6:48.CrossRefGoogle Scholar
  110. Kothbauer, H., 1972, Grösse und Anti-Ahp-Gehalt der Eiweissdrusen von Weinbergschnecken (Helix pomatia L.) zu verschiedenen Jahreszeiten, Acta Biol. Med. Ger. 28:845.PubMedGoogle Scholar
  111. Kothbauer, H., and Schenkel-Brunner, H., 1971, Hämagglutinine aus Schnecken: Zur Frage ihrer biologischen Funktion, Naturwissenschaften 26b:1082.Google Scholar
  112. Kothbauer, H., Nopp, H., and Schenkel-Brunner, H., 1972, Haemagglutinine aus Schnecken: Auswirkung der Amputation der Augententakel: Einfluss des Entwicklungszustandes des Genitaltraktes, Immun-Information 6:2.Google Scholar
  113. Kühnemund, O., and Köhler, W., 1969, Untersuchungen über die Reinigung des Protektins anti- Ahel (Anti-Ahp) aus Helix pomatia, Experientia 25:1137.PubMedCrossRefGoogle Scholar
  114. Kühnemund, O., and Köhler, W., 1975, Gelelectrofocusing of protectin anti-AHp from the albumin gland of Helix pomatia, Z. Itnmunitaetsforsch. 149:94.Google Scholar
  115. Kühnemund, O., Köhler, W., and Prokop, O., 1972, Investigations about an alleged lysozyme-like behaviour of the protectin anti-Ahp from the albumin gland of the edible snail (Helix pomatia), Z. Immunitaetsforsch. 144:344.Google Scholar
  116. Kühnemund, O., Strassburger, J., and Triebel, H., 1974, Molecular weight determination on the protectin anti-Ahp from the albumin gland of Helix pomatia, Z. Immunitaetsforsch. 147:127.Google Scholar
  117. Li, M. F., and Flemming, C., 1967, Hemagglutinins from oyster hemolymph, Can. J. Zool. 45:1225.PubMedCrossRefGoogle Scholar
  118. Marchalonis, J. J., and Edelman, G. M., 1968, Isolation and characterisation of a haemagglutinin from Limulus polyphemus, J. Mol. Biol. 32:453.CrossRefGoogle Scholar
  119. McCumber, L. J., and Clem, L. W., 1977, Recognition of viruses and xenogeneic proteins by the blue crab, Callinectes sapidus. I. Clearance and organ distribution, Develop. Compar. Immunol. 1:5.CrossRefGoogle Scholar
  120. McCumber, L. J., Hoffmann, E. M., and Clem, L. W., 1979, Recognition of viruses and xenogeneic proteins by the blue crab Callinectes sapidus: A humoral receptor for T2 bacteriophage, J. Inverted. Pathol. 33:1.CrossRefGoogle Scholar
  121. McDade, J. E., and Tripp, M. R., 1967, Mechanism of agglutination of red blood cells by oyster hemolymph, J. Invertebr. Pathol. 9:523.PubMedCrossRefGoogle Scholar
  122. McKay, D., and Jenkin, C. R., 1970, Immunity in the invertebrates: The role of serum factors in the phagocytosis of erythrocytes by haemocytes of the fresh water crayfish (Parachaeraps hicarinatus), Aust. J. Exp. Biol. Med. Sci. 48:139.PubMedCrossRefGoogle Scholar
  123. McKay, D., Jenkin, C. R., and Rowley, D., 1969, Immunity in the invertebrates. I. Studies on the naturally occurring haemagglutinins in the fluid from invertebrates, Aust. J. Exp. Biol. Med. Sci. 47:125.PubMedCrossRefGoogle Scholar
  124. Michelson, E. H., and Dubois, L., 1977, Agglutinins and lysins in the molluscan family Planorbidae: A survey of hemolymph, egg-masses, and albumen-gland extracts, Biol. Bull. 153:219.PubMedCrossRefGoogle Scholar
  125. Miescher, P. A., Spiegelberg, H., and Benacerraf, B., 1963, Studies on the mechanism of immune phagocytosis of sensitised bacteria and red cells by the reticulo-endothelial system in mice, in: Role du Système Reticuloendothelial dans l’Immunité Antibactérienne et Antitumorale (B. N. Halpern, ed.), pp. 463–475, CNRS, Paris.Google Scholar
  126. Miller, V. H., Ballback, R. S., Pauley, G. B., and Krassner, S. M., 1972, A preliminary physicochemical characterisation of an agglutinin found in the haemolymph of the crayfish, Procambarus clarkii, J. Invertebr. Pathol. 19:83.CrossRefGoogle Scholar
  127. Mukaida, M., Takatsu, A., and Ishiyama, I., 1974, Purification and characterization of anti-A agglutinin from Euhadra callizona amaliae, Vox Sang. 27:347.PubMedCrossRefGoogle Scholar
  128. Murray, A. C., and Jeffrey, P. D., 1974, Hemocyanin from the Australian freshwater crayfish Cherax destructor: Subunit heterogeneity, Biochemistry 13:3667.PubMedCrossRefGoogle Scholar
  129. Oehme, P., Schnitzler, S., and Vogt, W. E., 1968, Untersuchungen zur Antikörpercharakteristik der Helixagglutinine, Z. Immunitaetsforsch. 136:421.Google Scholar
  130. Pardoe, G. I., Uhlenbruck, G., and Bird, G. W. G., 1970, Studies on some heterophile receptors of the Burkitt EB2 lymphoma cell, Immunology 18:73.PubMedGoogle Scholar
  131. Parish, C. R., 1977, Simple model for self-non-self discrimination, Nature (London) 267:711.CrossRefGoogle Scholar
  132. Parrinello, N., and Patricolo, E., 1975, Erythrocyte agglutinins in the blood of certain ascidians, Experientia 31:1092.PubMedCrossRefGoogle Scholar
  133. Parrinello, N., Canicatti, C., and Rindone, D., 1976, Naturally-occurring haemagglutinins in the coelomic fluid of the echinoderms, Holothuria polii Delle Chiaje and Holothuria tubulosa Gmelin, Boll. Zool. 43:259.CrossRefGoogle Scholar
  134. Paterson, W. D., and Stewart, J. E., 1974, In vitro phagocytosis by haemocytes of the American lobster, Homarus americanus, J. Fish. Res. Board Can. 31:1051.CrossRefGoogle Scholar
  135. Pauley, G. B., 1974a, Physicochemical properties of the natural agglutinins of some mollusks and crustaceans, Ann. N.Y. Acad. Sci. 234:145.PubMedCrossRefGoogle Scholar
  136. Pauley, G. B., 1974b, Comparison of a natural agglutinin in the haemolymph of the blue crab, Callinectes sapidus, with agglutinins of other invertebrates, Contemp. Top. Immunobiol. 4:241.CrossRefGoogle Scholar
  137. Pauley, G. B., Granger, G. A., and Krassner, S. M., 1971a, Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica, J. Invertebr. Pathol. 18:207.PubMedCrossRefGoogle Scholar
  138. Pauley, G. B., Krassner, S. M., and Chapman, F. A., 1971b, Bacterial clearance in the California sea hare, Aplysia californica, J. Invertebr. Pathol. 18:227.CrossRefGoogle Scholar
  139. Pemberton, R. T., 1969, Studies on the human red cell agglutinins of the swan mussel (Anodonta cygnea), Vox Sang. 16:457.PubMedCrossRefGoogle Scholar
  140. Pemberton, R. T., 1970, Blood group A reactive substance in the common limpet (Patella vulgata), Vox Sang. 18:71.PubMedCrossRefGoogle Scholar
  141. Pemberton, R. T., 1971a, Observations on a haemagglutinin from the freshwater mussel Anodonta anatina, Vox Sang. 21:159.PubMedCrossRefGoogle Scholar
  142. Pemberton, R. T., 1971b, Haemagglutinins from some British non-marine Mollusca, Vox Sang. 21:509.PubMedCrossRefGoogle Scholar
  143. Pemberton, R. T., 1974, Anti-A and anti-B of gastropod origin, Ann. N.Y. Acad. Sci. 234:95.PubMedCrossRefGoogle Scholar
  144. Pistole, T. G., 1976, Naturally occurring bacterial agglutinin in the serum of the horseshoe crab, Limulus polyphemus, J. Invertebr. Pathol. 28:153.PubMedCrossRefGoogle Scholar
  145. Pistole, T. G., 1978, Broad-spectrum bacterial agglutinating activity in the serum of the horseshoe crab Limulus polyphemus, Dev. Comp. Immunol. 2:65.PubMedCrossRefGoogle Scholar
  146. Pistole, T. G., and Britko, J. L., 1978, Bactericidal activity of amebocytes from the horseshoe crab, Limulus polyphemus, J. Invertebr. Pathol. 31:376.PubMedCrossRefGoogle Scholar
  147. Prokop, O., and Köhler, W., 1967, Agglutinationsreaktionen von Mikroorganismen mit Helix pomatia Eiweissdrusenextract (Anti-Ahel Agglutinin), Z. Immunitaetsforsch. 133:176.Google Scholar
  148. Prokop, O., Rackwitz, A., and Schlesinger, D., 1965a, A “new” human blood group receptor Ahel tested with saline extracts from Helix hortensis (garden snail), J. Forensic Med. 12:108.PubMedGoogle Scholar
  149. Prokop, O., Schlesinger, D., and Rackwitz, A., 1965b, Über eine thermostabile “antibody-like substance” (Anti-Ahei) bei Helix pomatia und deren Herkunft, Z. Immunitaetsforsch. 129:402.Google Scholar
  150. Prokop, O., Uhlenbruck, G., and Köhler, W., 1968, A new source of antibody-like substances having anti-blood group specificity: A discussion of the specificity of Helix agglutinins, Vox Sang. 14:321.PubMedCrossRefGoogle Scholar
  151. Prowse, R. H., and Tait, N. N., 1969, In vitro phagocytosis by amoebocytes from the haemolymph of Helix aspersa (Müller). I. Evidence for opsonic factor(s) in serum, Immunology 17:437.PubMedGoogle Scholar
  152. Rackwitz, A., Schlesinger, D., and Prokop, O., 1965, Über ein Blutgruppenprinzip B (anti-A) bei Helix hortensis: Ein neuer menschlicher A-Rezeptor Ahel, Aca Biol. Med. Ger. 15:187.Google Scholar
  153. Reade, P. C., 1968, Phagocytosis in invertebrates, Aust. J. Exp. Biol. Med. Sci. 46:219.PubMedCrossRefGoogle Scholar
  154. Renwrantz, L., 1979, An investigation of molecules and cells in the hemolymph of Helix pomatia with special reference to immunobiologically active components, Zool. Jahrb. Physiol. 83:283.Google Scholar
  155. Renwrantz, L., and Berliner, U., 1978, A galactose specific agglutinin, a blood-group H active polysaccharide, and a trypsin inhibitor in albumin glands and eggs of Arianta arbustorum (Heli-cidae), J. Invertebr. Pathol. 31:171.PubMedCrossRefGoogle Scholar
  156. Renwrantz, L., and Cheng, T. C., 1977a, Identification of agglutinin receptors on hemocytes of Helix pomatia, J. Invertebr. Pathol. 29:88.PubMedCrossRefGoogle Scholar
  157. Renwrantz, L., and Cheng, T. C., 1977b, Agglutinin-mediated attachment of erythrocytes to hemocytes of Helix pomatia, J. Invertebr. Pathol. 29:97.PubMedCrossRefGoogle Scholar
  158. Renwrantz, L., and Mohr, W., 1978, Opsonizing effect of serum and albumin gland extracts on the elimination of human erythrocytes from the circulation of Hehx pomatia, J. Invertebr. Pathol. 31:164.PubMedCrossRefGoogle Scholar
  159. Renwrantz, L., and Uhlenbuck, G., 1974a, Blood-group-like substances in some marine invertebrates. II. An agglutinin, which can be inhibited by lactose besides a blood-group A like glycoprotein in the hemolymph of Octopus vulgaris (Lam.), Z. Immunitaetsforsch. 148:16.Google Scholar
  160. Renwrantz, L., and Uhlenbruck, G., 1974b, Blood-group-like substances in some marine invertebrates. I. Blood-group A reactive substances in the ascidian Phallusia mammillata (Cuvier) and in the lancelet Amphioxus (Branchiostoma) lanceolatus (Pallas), Vox Sang. 26:385.PubMedCrossRefGoogle Scholar
  161. Renwrantz, L., Schäncke, W., Harm, H., Erl, H., Liebsch, H., and Gercken, J., 1981, Discriminative ability and function of the immunobiological recognition system of the snail Helix pomatia, J. Compar. Physiol. 141:477.Google Scholar
  162. Reudiger, G., and Davis, D. J., 1907, Phagocytosis and opsonins in the lower animals, J. Infect. Dis. 4:333.CrossRefGoogle Scholar
  163. Roche, A. C., and Monsigny, M., 1974, Purification and properties of limulin: A lectin (agglutinin) from haemolymph of Limulus polyphemus, Biochim. Biophys. Acta 371:242.PubMedCrossRefGoogle Scholar
  164. Roth, S., 1973, A molecular model for cell interactions, Q. Rev. Biol. 48:541.PubMedCrossRefGoogle Scholar
  165. Rudolph, P. H., 1973, The occurrence of hemagglutinins in some Basommatophora and Stylommatophora, Malacol. Rev. 6:48.Google Scholar
  166. Ryoyama, K., 1973, Studies on the biological properties of coelomic fluid of sea urchin. I. Naturally occurring hemolysin in sea urchin, Biochim. Biophys. Acta 320:157.PubMedCrossRefGoogle Scholar
  167. Ryoyama, K., 1974, Studies on the biological properties of coelomic fluid of sea urchin. II. Naturally occurring haemagglutinin in sea urchin, Biol. Bull. 146:404.PubMedCrossRefGoogle Scholar
  168. Salfner, B., Ishiyama, I., and Uhlenbruck, G., 1971, Determination of the carbohydrate moiety of purified anti-A from Helix pomatia by gas-liquid-chromatography, Z. Klin. Chem. Klin. Biochem. 9:460.Google Scholar
  169. Salfner, B., Ishiyama, I., and Uhlenbruck, G., 1972, Über die Aminosäurezusammensetzung antikörperähnlicher Agglutinine aus Schnecken (Eiweissdrüsen), Hoppe-Seyler’s Z. Physiol. Chem. 353:1977.PubMedGoogle Scholar
  170. Schlüter, S. F., Ey, P. L., Keough, D. R., and Jenkin, C. R., 1981, Identification of two carbohydrate-specific erythrocyte agglutinins in the haemolymph of the protochordate Botrylloides leachii, Immunology 42:241.PubMedGoogle Scholar
  171. Schlüter, S. F., Ey, P. L., Coombe, D. R., and Jenkin, C. R., 1983, The purification and properties of two lectins from the hemolymph of the ascidian Botrylloides leachii, Biochemistry, in preparation.Google Scholar
  172. Schnitzler, S., and Geserick, G., 1971, Anti-A! from Bradybaena fruticum, Z. Immunitaetsforsch. 141:317.Google Scholar
  173. Schnitzler, S., and Kilias, R., 1970, Über das Vorkommen von Hämagglutininen bei Landlungen Schnecken, Blut 20:221.PubMedCrossRefGoogle Scholar
  174. Schnitzler, S., Geserick, G., Krüger, W., Gogochia, S. D., Mirvis, A. B., and Annenkow, H. A., 1971a, Ungewöhnliche Blutgruppenreaktionen durch Protektine, Aerztl. Lab. 17:236.Google Scholar
  175. Schnitzler, S., Krüger, W., Felix, D., David, H., Uerlings, I., Böttger, M., and Kuhn, W., 1971b, Reinigung und Eigenschaften der Hämagglutinine anti-ACN und anti-ACA, Z. Klin. Chem. Klin. Biochem. 9:304.PubMedGoogle Scholar
  176. Schnitzler, S., Uerlings, I., and David, H., 1971c, Elektronenmikroskopische Darstellung der Antikörper aus Helix pomatia, Acta Biol. Med. Ger. 26:193.PubMedGoogle Scholar
  177. Schnitzler, S., Oehme, P., Krüger, W., and Pardoe, G. I., 1972, Zur Adsorption von Hämagglutininen an Sephadex: Eine einfache Reinigungsmethode für das anti-A Agglutinin aus der Schnecke Helix pomatia, Acta Biol. Med. Ger. 29:889.PubMedGoogle Scholar
  178. Scofield, V. L., Schlumpberger, J. M., West, L. A., and Weissman, I. L., 1982, Protochordate allorecognition is controlled by a MHC-like gene system, Nature (London) 295:499.Google Scholar
  179. Scott, H. T., 1971, Recognition of foreignness in invertebrates. II. In vitro studies of cockroach phagocytic haemocytes, Immunology 21:817.PubMedGoogle Scholar
  180. Shimizu, S., Ito, M., and Niwa, M., 1977, Lectins in the haemolymph of Japanese horseshoe crab Tachypleus tridentatus, Biochim. Biophys. Acta 500:71.PubMedCrossRefGoogle Scholar
  181. Sloan, B., Yocum, C. H., and Clem, L. W., 1975, Recognition of self from nonself in crustaceans, Nature (London) 258:521.CrossRefGoogle Scholar
  182. Sminia, T., van der Knaap, W. P. W., and Edelenbosch, P., 1979, The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis, Dev. Comp. Immunol. 3:37.PubMedCrossRefGoogle Scholar
  183. Smith, A. C., 1977, Immunologic reactions of the sea cucumber, Holothuria cinerascens, to serum from the milkfish, Chanos chanos, J. Invertebr. Pathol. 29:326.CrossRefGoogle Scholar
  184. Sprenger, I., and Uhlenbruck, G., 1971, On the specificity of broad spectrum agglutinins. XI. The reaction of the agglutinin from the snail Caucasotachea atrolabiata, Z. Immunitaetsforsch. 142:254.Google Scholar
  185. Stanislawski, E., Renwrantz, L., and Becker, W., 1976, Soluble blood group reactive substances in the hemolymph of Biomphalaria glabrata (Mullusca), J. Invertebr. Pathol. 28:301.PubMedCrossRefGoogle Scholar
  186. Stauber, L. A., 1950, The fate of India ink injected intracardially into the oyster, Ostrea virginica Gmelin, Biol. Bull. 98:227.PubMedCrossRefGoogle Scholar
  187. Stein, P. C., and Basch, P. F., 1979, Purification and binding properties of hemagglutinin from Biomphalaria glabrata, J. Invertebr. Pathol. 33:10.PubMedCrossRefGoogle Scholar
  188. Stuart, A. E., 1968, The reticuloendothelial apparatus of the lesser octopus, Eledone cirrosa, J. Pathol. Bacteriol. 96:401.PubMedCrossRefGoogle Scholar
  189. Svensson, S., Hammarström, S., and Kabat, E. A., 1970, The effect of borate on polysac-charide-protein and antigen-antibody reactions and its use for the purification and fractionation of cross-reacting antibodies, Immunochemistry 7:413.PubMedCrossRefGoogle Scholar
  190. Tanaka, K., and Watanabe, H., 1973, Allogeneic inhibition in a compound ascidian Botryllus primagenus Oka. I. Processes and features of “nonfusion” reaction, Cell. Immunol. 7:410.PubMedCrossRefGoogle Scholar
  191. Tripp, M. R., 1960, Mechanisms of removal of injected microorganisms from the American oyster Crassostrea virginica (Gmelin), Biol. Bull. 119:210.CrossRefGoogle Scholar
  192. Tripp, M. R., 1966, Haemagglutinin in the blood of the oyster Crassostrea virginica, J. Invertebr. Pathol. 8:478.PubMedCrossRefGoogle Scholar
  193. Tripp, M. R., 1974, Oyster hemolymph proteins, Ann. N.Y. Acad. Sci. 234:18.PubMedCrossRefGoogle Scholar
  194. Tripp, M. R., and Kent, V. E., 1968, Studies on oyster cellular immunity, In Vitro 3:129.CrossRefGoogle Scholar
  195. Tyler, A., 1946, Natural heteroagglutinins in the body fluids and seminal fluids of various invertebrates, Biol. Bull. 90:213.PubMedCrossRefGoogle Scholar
  196. Tyler, A., and Metz, C., 1945, Natural heteroagglutinins in the serum of the spiny lobster, Panulirus argus. I. Taxonomic range of activities, electrophoretic, and immunising properties, J. Exp. Zool. 100:387.PubMedCrossRefGoogle Scholar
  197. Tyler, A., and Scheer, B. T., 1945, Natural haemagglutinins in the serum of the spiny lobster (Panulirus interruptus). II. Chemical and antigenic relation to blood proteins, Biol. Bull. 89:93.CrossRefGoogle Scholar
  198. Tyson, C. J., and Jenkin, C. R., 1973, The importance of opsonic factors in the removal of bacteria from the circulation of the crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 51:609.PubMedCrossRefGoogle Scholar
  199. Tyson, C. J., and Jenkin, C. R., 1974, Phagocytosis of bacteria in vitro by haemocytes from the crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 52:341.PubMedCrossRefGoogle Scholar
  200. Uhlenbruck, G., and Pardoe, G. I., 1969, Serologische Besonderheiten eines heterophilen Rezeptors aus Entenblutkörperchen, Z. Naturforsch. 24:142.Google Scholar
  201. Uhlenbruck, G., and Prokop, O., 1966, An agglutinin from Helix pomatia which reacts with terminal N-acetyl-galactosamine, Vox Sang. 11:519.PubMedCrossRefGoogle Scholar
  202. Uhlenbruck, G., and Reifenberg, U., 1971, Über ein Agglutinin in der Hämolymphe von Helix pomatia, Immun-Information 1:14.Google Scholar
  203. Uhlenbruck, G., and Steinhausen, G., 1977, Tridacnins: Symbiosis-profit or defense-purpose?, Dev. Comp. Immunol. 1:183.PubMedCrossRefGoogle Scholar
  204. Uhlenbruck, G., and Weis, A., 1973, Studies on broad-spectrum agglutinins. XIV. Heterogeneity of Helix aspersa agglutinins, Z. Immunitaetsforsch. 145:356.Google Scholar
  205. Uhlenbruck, G., Prokop, O., and Haferland, W., 1966, Agglutination von E. coli durch ein Agglutinin aus Helix pomatia, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. Orig. 199:271.Google Scholar
  206. Uhlenbruck, G., Kim, Z., and Prokop, O., 1967, Reversible inactivation of Helix (pomatia) agglutinin by 2-mercapto-ethanol, Nature (London) 213:76.CrossRefGoogle Scholar
  207. Uhlenbruck, G., Reifenberg, U., and Heggen, M., 1970, On the specificity of broad spectrum agglutinins. IV. Invertebrate agglutinins: Current status, conceptions and further observations on the variation of the Hel receptor in pigs, Z. Immunitaetsforsch. 139:486.Google Scholar
  208. Uhlenbruck, G., Reifenberg, U., and Prokop, O., 1971, Resistance to proteases of Helix pomatia anti-A: Consequences for tumour cell A-like antigen, Acta Biol. Med. Ger. 27:455.PubMedGoogle Scholar
  209. Uhlenbruck, G., Pardoe, G. I., Prokop, O., and Ishiyama, I., 1972, The serological specificity of snail agglutinins (protectins), Anim. Blood Groups Biochem. Genet. 3:125.CrossRefGoogle Scholar
  210. Uhlenbruck, G., Steinhausen, G., and Baldo, B. A., 1977, Different anti-galactans in the haemolymph of Tridacna maxima and Tridacna gigas, Comp. Biochem. Physiol. B 56:329.Google Scholar
  211. Uhlenbruck, G., Karduck, D., and Pearson, R., 1979, Different tridacnins in different tridacnid clams: A comparative study, Comp. Biochem. Physiol. B 63:125.PubMedGoogle Scholar
  212. Vaith, P., Uhlenbruck, G., Müller, W. E. G., and Holz, G., 1979, Sponge aggregation factor and sponge haemagglutinin: Possible relationships between two different molecules, Dev. Comp. Immunol. 3:399.PubMedCrossRefGoogle Scholar
  213. Vogt, W. E., Oehme, P., Knobloch, W., and Schnitzler, S., 1969, Zur Antikörpernatur von Helixag-glutininen, Z. Immunitaetsforsch. 138:62.Google Scholar
  214. Vretblad, P., Hjorth, R., and Låås, T., 1979, The isolectins of Helix pomatia. Separation by isoelectric focusing and preliminary characterization, Biochim. Biophys. Acta 579:52.PubMedCrossRefGoogle Scholar
  215. Wardlaw, A. C., and Unkles, S. E., 1978, Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus, J. Invertebr. Pathol. 32:25.CrossRefGoogle Scholar
  216. Wemyss, C. T., 1951, Réponses, of the American cockroach Periplaneta americana to certain infected materials, Thesis, Rutgers University, New Brunswick, N.J.Google Scholar
  217. Whitcomb, R. F., Shapiro, H., and Granados, R. R., 1974, Insect defense mechanisms against microorganisms and parasitoids, in: The Physiology of the Insecta, Vol. 5, 2nd ed. (M. Rockstein, ed.), pp. 447–536, Academic Press, New York.CrossRefGoogle Scholar
  218. Wright, R. K., 1974, Protochordate immunity, I. Primary immune response of the tunicate dona intestinalis to vertebrate erythrocytes, J. Invertebr. Pathol. 24:29.PubMedCrossRefGoogle Scholar
  219. Wright, R. K., and Cooper, E. L., 1975, Immunological maturation in the tunicate dona intestinalis, Am. Zool. 15:21.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Peter L. Ey
    • 1
  • Charles R. Jenkin
    • 1
  1. 1.Department of Microbiology and ImmunologyThe University of AdelaideAdelaideAustralia

Personalised recommendations