Cellular Defense Systems of the Protochordata

  • Richard K. Wright
  • Thomas H. Ermak


Chordates are the largest phylum of deuterostomes and are divided into three subphyla: the Vertebra ta, Cephalochordata, and Urochordata. Although cephalochordates and urochordates lack a vertebral column, they do possess the three distinguishing characteristics of chordates at some time in their life cycle, i.e., a notochord, a dorsal tubular nerve cord, and pharyngeal clefts or gill slits. They are frequently referred to as the Protochordata, the subject of this chapter.


Glass Fragment Blood Cell Type Hemopoietic Tissue Cellular Defense System Encapsulation Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. S., 1971, Cellular responses to foreign bodies in the tunicate Molgula manhattensis (DeKay), Biol. Bull. 141:91.CrossRefGoogle Scholar
  2. Anderson, R. S., and Good, R. A., 1975, Naturally-occurring hemagglutinin in a tunicate Halocynthia pyriformis, Biol Bull 148:357.PubMedCrossRefGoogle Scholar
  3. Anderson, R. S., Jordan, L. A., and Harshbarger, J. C., 1977, Tunic abnormalities of the urochordate Halocynthia pyriformis, J. Invertebr. Pathol 30:160.PubMedCrossRefGoogle Scholar
  4. Andrew, W., 1961, Phase microscope studies of living blood cells of the tunicates under normal and experimental conditions, with a description of a new type of motile cell appendage, Q. J. Microsc, Sci. 102:89.Google Scholar
  5. Azéma, M., 1937, Recherches sur le sang et l’excrétion chez les Ascidies, Ann. Inst. Oceanogr. Monaco 17:1.Google Scholar
  6. Bancroft, F. W., 1903, Variation and fusion of colonies in compound ascidians, Proc. Calif. Acad. Sci. 3rd Ser. 3:137.Google Scholar
  7. Bang, F. B., 1975, A search in Asterias and Ascidia for the beginnings of vertebrate immune responses, Ann. N.Y. Acad. Sci. 266:334.PubMedCrossRefGoogle Scholar
  8. Barnes, R. D., 1968, Invertebrate Zoology, 2nd ed., Saunders, Philadelphia.Google Scholar
  9. Berrill, N. J., 1955, The Origin of Vertebrates, Oxford University Press, London.Google Scholar
  10. Bielig, H. J., Bayer, E., Califano, L., and Wirth, L., 1954, Vanadium-containing blood pigments. II. Hemovanadium, a sulfate complex of trivalent vanadium, Pubbl. Stn. Zool. Napoli 25:26.Google Scholar
  11. Bielig, H. J., Pfleger, K., Rummel, W., and de Vicentis, M., 1963, Beginning of the accumulation of vanadium during the early development of the ascidian Phallusia mamillata Cuvier, Nature 197:1223.CrossRefGoogle Scholar
  12. Biggs, W. R., and Swinehart, J. H., 1979, Studies of the blood of Ascidia ceratodes: Total blood cell counts, differential blood cell counts, hematocrit values, seasonal variations, and fluorescent characteristics of blood cells, Experientia 35:1047.PubMedCrossRefGoogle Scholar
  13. Botte, L., and Scippa, S., 1977, Ultrastructural study of vanadocytes in Ascidia malaca, Experientia 33:80.CrossRefGoogle Scholar
  14. Bresciana, J., and Lützen, J., 1960, Gonophysema gullmarensis (Copepoda Parasitica). An anatomical and biological study of an endoparasite living in the ascidian Ascidiella aspersa. I. Anatomy, Cah. Biol. Mar. 1:157.Google Scholar
  15. Bretting, H., and Renwrantz, L., 1973, Untersuchungen von Invertebraten des Mittelmeeres auf ihren Gehalt an hämagglutininierenden Substanzen, Z. Immunitaetsforsch. Bd. 145:242.Google Scholar
  16. Brown, A. C., and Da vies, A. B., 1971, The fate of thorium dioxide introduced into the body cavity of Ciona intestinalis (Tunicata), J. Invertebr. Pathol. 18:276.PubMedCrossRefGoogle Scholar
  17. Burnet, F. M., 1971, ‘Self-recognition’ in colonial marine forms and flowering plants in relation to the evolution of immunity, Nature (London) 232:230.CrossRefGoogle Scholar
  18. Cantacuzène, J., 1919, Étude d’une infection expérimentale chez Ascidia mentula, C.R. Soc. Biol. 82:1019.Google Scholar
  19. Carter, G. T., and Rinehart, K. L., Jr., 1978, Aplidiasphingosine, an antimicrobial and antitumor terpenoid from an Aplidium sp. (marine tunicate), J. Am. Chem. Soc. 100:7441.CrossRefGoogle Scholar
  20. Cheng, M. T., and Rinehart, K. L., Jr., 1978, Polyandrocarpidines: Antimicrobial and cytotoxic agents from a marine tunicate (Polyandrocarpa sp.) from the Gulf of California, J. Am. Chem. Soc. 100:7409.CrossRefGoogle Scholar
  21. Cowden, R. R., 1968, The embryonic origin of blood cells in the tunicate Clavelina picta, Trans. Am. Microsc. Soc. 87:521.PubMedCrossRefGoogle Scholar
  22. Cuénot, L., 1891, Études sur le sang et les glandes lymphatiques dans le série animale (2° parties: Invertébrés), Arch. Zool. Exp. Gen. Ser. 2 9:13.Google Scholar
  23. Dales, R. P., 1979, Defence of invertebrates against bacterial infection, J. R. Soc. Med. 72:688.PubMedGoogle Scholar
  24. Dudley, P. L., 1968, A light and electron microscopic study of tissue interactions between a parasitic copepod, Scolecodes huntsmani (Henderson), and its host ascidian, Styela gibbsii (Stimpson), J. Morphol. 124:263.PubMedCrossRefGoogle Scholar
  25. Endean, R., 1955, Studies of the blood and tests of some Australian ascidians. I. The blood of Pyura stolonifera (Heller), Aust. J. Mar. Freshwater Res. 6:35.CrossRefGoogle Scholar
  26. Endean, R., 1960, The blood cells of the ascidian Phallusia mammillata, Q. J. Microsc. Sci. 101:177.Google Scholar
  27. Endean, R., 1961, The test of the ascidian Phallusia mammillata, Q. J. Microsc. Sci. 102:107.Google Scholar
  28. Ermak, T. H., 1975a, Cell proliferation in the ascidian Styela clava: An autoradiographic and electron microscopic investigation emphasizing cell renewal in the digestive tract of this and fourteen other species of ascidians, Ph.D. dissertation, University of California, San Diego.Google Scholar
  29. Ermak, T. H., 1975b, An autoradiographic demonstration of blood cell renewal in Styela clava (Urochordata: Ascidiacea), Experientia 31:837.CrossRefGoogle Scholar
  30. Ermak, T. H., 1976, The hematogenic tissues of tunicates, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 45–56, Elsevier/North-Holland, Amsterdam.Google Scholar
  31. Form, D. M., Warr, G. W., and Marchalonis, J. J., 1979, Isolation and characterization of a lectin from the hemolymph of a tunicate, Halocynthia pyriformis, Fed. Proc. 38:934.Google Scholar
  32. Franz, V., 1927, Morphologie der Akranier, Ergeb. Anat. Entwicklungsgesch. 27:464.Google Scholar
  33. Freeman, G., 1964, The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis, J. Exp. Zool. 156:157.PubMedCrossRefGoogle Scholar
  34. Freeman, G., 1970a, Transplantation specificity in echinoderms and lower-chordates, Transplant. Proc. 2:236.PubMedGoogle Scholar
  35. Freeman, G., 1970b, The reticuloendothelial system of tunicates, J. Reticuloendothelial Soc. 7:183.Google Scholar
  36. Fuke, M. T., 1979, Studies on the coelomic cells of some Japanese ascidians, Bull. Mar. Biol. Stn. Asamushi Tohoku Univ. 16:143.Google Scholar
  37. Fuke, M. T., and Sugai, T., 1972, Studies on the naturally occurring hemagglutinin in the coelomic fluid of an ascidian, Biol. Bull. 143:140.CrossRefGoogle Scholar
  38. Fulton, J. F., 1920, The blood of Ascidia atra Lesueur; with special reference to pigmentation and phagocytosis, Acta Zool. (Stockholm) 1:381.CrossRefGoogle Scholar
  39. Gansler, H., Pfleger, K., Seifen, E., and Bielig, H. J., 1963, Submikroskopische Struktur von Vanadocyten. Ein Beitrag zur Vanadin-Anhäufung bei Tunicaten, Experientia 19:232.CrossRefGoogle Scholar
  40. George, W. C., 1926, The histology of the blood of Perophora viridis (Ascidian), J. Morphol. Physiol. 41:311.CrossRefGoogle Scholar
  41. George, W. C., 1930, The histology of the blood of some Bermuda ascidians, J. Morphol. Physiol. 49:385.CrossRefGoogle Scholar
  42. George, W. C., 1939, A comparative study of the blood of the tunicates, Q. J. Microsc. Sci. 81:391.Google Scholar
  43. Goodbody, I., 1974, The physiology of ascidians, Adv. Mar. Biol. 12:1.CrossRefGoogle Scholar
  44. Hecht, S., 1918, The physiology of Ascidia atra Lesueur. III. The blood system, Am. J. Physiol. 45:157.Google Scholar
  45. Henze, M., 1911, Untersuchungen über das Blut der Ascidien. I. Die Vanadiumbindung der Blutkörporchen, Hoppe-Seyler’s Z. Physiol. Chem. 72:494.CrossRefGoogle Scholar
  46. Henze, M., 1912, Untersuchungen über das Blut der Ascidien. II. Mitteilung, Hoppe-Seyler’s Z. Physiol. Chem. 79:215.CrossRefGoogle Scholar
  47. Hildemann, W. H., and Reddy, A. L., 1973, Phylogeny of immune responsiveness: Marine invertebrates, Fed. Proc. 32:2188.PubMedGoogle Scholar
  48. Ivanova-Kazas, O. M., 1966, Phagocytic reaction in the ascidian Distaplia unigermis, Ark. Anat. Gistol. Embriol. 51:48.Google Scholar
  49. Johnson, P. T., and Chapman, F. A., 1970, Comparative studies on the in vitro response of bacteria to invertebrate body fluids. II. Aplysia californica (sea hare) and Ciona intestinalis (tunicate), J. Inverted. Pathol. 16:259.CrossRefGoogle Scholar
  50. Kalk, M., 1963, Intracellular sites of activity in the histogenesis of tunicate vanadocytes, Q. J. Microsc. Sci. 104:483.Google Scholar
  51. Karakashian, S., and Milkman, R., 1967, Colony fusion compatibility types in Botryllus schlössen, Biol. Bull. 133:473.Google Scholar
  52. Kiessling, R., and Wigzell, H., 1979, An analysis of the murine NK cell as to structure, function and biological relevance, Immunol. Rev. 44:165.PubMedCrossRefGoogle Scholar
  53. Kollmann, M., 1908, Recherches sur les leucocytes et le tissue lymphoïde des Invertébrés, Ann. Sci. Nat. Zool. Biol. Anim. Ser. 9 8:1.Google Scholar
  54. Lichter, W., Lopez, D. M., Wellham, L. L., and Sigel, M. M., 1975, Ecteinascidia turbinata extracts inhibit DNA synthesis in lymphocytes after mitogenic stimulation by lectins, Proc. Soc. Exp. Biol. Med. 150:475.PubMedGoogle Scholar
  55. Marchalonis, J. J., and Warr, G. M., 1978, Phylogenetic origins of immune recognition: Naturally occurring DNP-binding molecules in chordate sera and hemolymph, Dev. Comp. Immunol. 2:443.PubMedCrossRefGoogle Scholar
  56. Meglitsch, P. A., 1967, Invertebrate Zoology, Oxford University Press, London.Google Scholar
  57. Messier, B., and Leblond, C. P., 1960, Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice, Am.). Anat. 106:247.Google Scholar
  58. Metchnikoff, E., 1892, Leçons sur la Pathologie Comparée de l’Inflammation, Masson, Paris; reissued (1968) in English as Lectures on the Comparative Pathology of Inflammation, Dover, New York.Google Scholar
  59. Milanesi, C., and Burighel, P., 1978, Blood cell ultrastructure of the ascidian Botryllus schlössen. I. Hemoblast, granulocytes, macrophage, morula cell and nephrocyte, Acta zool. (Stockholm) 59:135.CrossRefGoogle Scholar
  60. Milanesi, C., and Leban, E., 1974, Iron occurrence in the blood cells of Botryllus schlössen (As- cidiacea), J. Submicrosc. Cytol. 6:123.Google Scholar
  61. Millar, R. H., 1953, L.M.B.C. Memoirs on Typical British Marine Plants and Animals. XXXV. Ciona, University of Liverpool Press, Liverpool.Google Scholar
  62. Moller, P. C., and Philpott, C. W., 1973, The circulatory system of Amphioxus (Branchiostoma floridae). I. Morphology of the major vessels of the pharyngeal area, J. Morphol. 139:389.PubMedCrossRefGoogle Scholar
  63. Monniot, C., 1963, Kystodelphys drachi n.g.n.sp., copepode enkyste dans une branchie d’Ascidie, Vie et Milieu 14:263.Google Scholar
  64. Mukai, H., 1967, Experimental alteration of fusibility in compound ascidians, Sci. Rep. Tokyo Kyoiku Daigaku Sect. B 13:51.Google Scholar
  65. Mukai, H., and Watanabe, H., 1974, On the occurrence of colony specificity in some compound ascidians, Biol. Bull. 147:411.PubMedCrossRefGoogle Scholar
  66. Mukai, H., and Watanabe, H., 1975a, Distribution of fusion incompatibility types in natural populations of the compound ascidian, Botryllus primigenus, Proc. Jpn. Acad. 51:44.Google Scholar
  67. Mukai, H., and Watanabe, H., 1975b, Fusibility of colonies in natural populations of the compound ascidian Botrylloides ciolaceus, Proc. Jpn. Acad. 51:48.Google Scholar
  68. Mukai, H., and Watanabe, H., 1976, Studies on the formation of germ cells in a compound ascidian Botryllus primigenus Oka, J. Morph. 148:337.CrossRefGoogle Scholar
  69. Ohuye, T., 1936, On the coelomic corpuscles in the body of some invertebrates. III. The histology of the blood of some Japanese ascidians, Sci. Rep. Tohoku Univ. Ser. 4 11:191.Google Scholar
  70. Oka, H., and Watanabe, H., 1957, Colony-specificity in compound ascidians as tested by fusion experiments (a preliminary report), Proc. Jpn. Acad. 33:657.Google Scholar
  71. Oka, H., and Watanabe, H., 1960, Problems of colony-specificity in compound ascidians, Bull. Biol. Stn. Asamushi 10:153.Google Scholar
  72. Oka, H., and Watanabe, H., 1967, Problems of colony specificity, with special reference to the fusibility of ascidians, Kagaku (Tokyo) 37:307.Google Scholar
  73. Overton, J., 1966, The fine structure of blood cells in the ascidian Perophora viridis, J. Morphol. 119:305.PubMedCrossRefGoogle Scholar
  74. Parrinello, N., and Patricolo, E., 1975, Erythrocyte agglutinins in the blood of certain ascidians, Experientia 31:1092.PubMedCrossRefGoogle Scholar
  75. Parrinello, N., DeLeo, G., and Patricolo, E., 1976, Evolution of the immune response. Tunic reaction of Ciona intestinalis L. to erythrocyte injection. Some ultrastructural aspects, Boll. Zool. 43:390.CrossRefGoogle Scholar
  76. Parrinello, N., Patricolo, E., and Canicatti, C., 1977, Tunicate immunobiology. I. Tunic reaction of Ciona intestinalis L. to erythrocyte injection, Boll. Zool. 44:373.CrossRefGoogle Scholar
  77. Pérès, J. M., 1943, Recherches sur le sang et les organes neuraux des tuniciers, Ann. Inst. Oceanog. Monaco 21:229.Google Scholar
  78. Pérès, J. M., 1948, Recherches sur la genèse et la régénération de la tunique chez Ciona intestinalis L., Bull. Inst. Oceanogr. 936:923.Google Scholar
  79. Reddy, A. L., Bryan, B., and Hildemann, W. H., 1975, Integumentary allograft versus autograft reactions in Ciona intestinalis: A protochordate species of solitary tunicate, Immunogenetics 1:584.CrossRefGoogle Scholar
  80. Renwrantz, L., and Uhlenbruck, G., 1974, Blood-group-like substances in some marine invertebrates. I. Blood-group A reactive substances in the ascidian Phallusia mammillata (Cuvier) and in the lancelet Amphioxus (Branchiostoma) lanceolatus (Pallas), Vox Sang. 26:385.PubMedCrossRefGoogle Scholar
  81. Robertson, J. D., 1954, The chemical composition of the blood of some aquatic chordates, including members of the Tunicata, Cyclostomata and Osteichthyes, J. Exp. Biol. 31:424.Google Scholar
  82. Sabbadin, A., 1962, Le basi genetiche délia capacitá di fusione fra colonie in Botryllus schlössen (Ascidiacea), Rend. Accad. Naz. Lincei Ser. 8 32:1031.Google Scholar
  83. Smith, M. J., 1970a, The blood cells and tunic of the ascidian Halocynthia aurantium (Pallas). I. Hematology, tunic morphology and partition of cells between blood and tunic, Biol. Bull. 138:354.CrossRefGoogle Scholar
  84. Smith, M. J., 1970b, The blood cells and tunic of the ascidian Halocynthia aurantium (Pallas). II. The histochemistry of the blood cells and tunic, Biol. Bull. 138:379.CrossRefGoogle Scholar
  85. St. Hilaire, K., 1931, Morphogenetische Untersuchungen des Ascidienmantels, Zool. Jahrbuch. Abt. Anat. Ontog. Tiere 54:455.Google Scholar
  86. Tarn, M. R., Reddy, A. L., Karp, R. D., and Hildemann, W. H., 1976, Phylogeny of cellular immunity among vertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 98–119, Black-well, Oxford.Google Scholar
  87. Tanaka, K., 1973, Allogeneic inhibition in a compound ascidian, Botryllus primigenus Oka. II. Cellular and humoral responses in “nonfusion” reaction, Cell. Immunol. 7:427.PubMedCrossRefGoogle Scholar
  88. Tanaka, K., 1975, Allogeneic distinction in Botryllus primigenus and in other colonial ascidians, Adv. Exp. Med. Biol. 64:115.PubMedGoogle Scholar
  89. Tanaka, K., and Watanabe, H., 1973, Allogeneic inhibition in a compound ascidian, Botryllus primigenus Oka. I. Processes and features of “nonfusion” reaction, Cell. Immunol. 7:410.PubMedCrossRefGoogle Scholar
  90. Thomas, J. A., 1931a, Sur les réactions de la tunique d’Ascidia mentula Müll., à l’inoculation de Bacterium tumefaciens Sm., C.R. Soc. Biol. 108:694.Google Scholar
  91. Thomas, J. A., 1931b, Réactions de deux invertébrés: Ascidia mentula Müll, et Nereis diversicolor O.F.M., à l’inoculation de substances à propriétés cancérigènes, C.R. Soc. Biol. 108:667.Google Scholar
  92. Thomas, J. A., 1932, Contribution à l’étude des réactions de quelques invertébrés à l’inoculation de substances à propriétés cancérigènes et du Bacterium tumefaciens Sm. et Town, Ann. Inst. Pasteur Paris 49:234.Google Scholar
  93. Vallée, J. A., 1967, Studies of the blood of Ascidia nigra (Savigny). I. Total blood cell counts, differential blood cell counts, and hematocrit values, Bull South. Calif. Acad. Sci. 66:23.Google Scholar
  94. Warr, G. W., Decker, J. M., Mandel, T. E., DeLuca, D., Hudson, R., and Marchalonis, J. J., 1977, Lymphocyte-like cells of the tunicate Pyura stolonifera: Binding of lectins, morphological and functional studies, Aust. J. Exp. Biol. Med. Sci. 55:151.PubMedCrossRefGoogle Scholar
  95. Watanabe, H., 1953, Studies on the regulation in fused colonies in Botryllus primigenus (Ascidiae Compositae), Sci. Rep. Tokyo Kyoiku Daigaku Sect. B. 7:183.Google Scholar
  96. Webb, D. A., 1939, Observations on the blood of certain ascidians with special reference to the biology of vanadium, J. Exp. Biol. 16:499.Google Scholar
  97. Webb, D. A., 1956, The blood of tunicates and the biochemistry of vanadium, Pubbl. Stn. Zool. Napoli 28:273.Google Scholar
  98. Weiss, J., Goldman, Y., and Morad, M., 1976, Electromechanical properties of the single cell-layered heart of the tunicate Boltenia ovifera (Sea potatoe), J. Gen. Physiol. 68:503.PubMedCrossRefGoogle Scholar
  99. Wright, R. K., 1973, Immunobiological studies of the ascidian urochordate Ciona intestinalis Linneaus, Ph.D. dissertation, University of California, Santa Barbara.Google Scholar
  100. Wright, R. K., 1974, Protochordate immunity. I. Primary response of the tunicate Ciona intestinalis to vertebrate erythrocytes, J. Invertebr. Pathol. 24:29.PubMedCrossRefGoogle Scholar
  101. Wright, R. K., 1976, Phylogenetic origin of the vertebrate lymphocyte and lymphoid tissue in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 57–70, Elsevier/North-Holland, Amsterdam.Google Scholar
  102. Wright, R. K., 1981, Urochordates, in: Invertebrate Blood Cells 2 (N. A. Ratcliffe and A. F. Rowley, eds.), pp. 565–626. Academic Press, New York.Google Scholar
  103. Wright, R. K., and Cooper, E. L., 1975, Immunological maturation in the tunicate Ciona intestinalis, Am. Zool. 15:21.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard K. Wright
    • 1
  • Thomas H. Ermak
    • 2
  1. 1.Department of Anatomy, School of Medicine, Center for the Health SciencesUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of PhysiologyUniversity of California School of MedicineSan FranciscoUSA

Personalised recommendations