Cellular Defense Systems of the Echinodermata

  • Richard D. Karp
  • Katherine A. Coffaro


The echinoderms are of particular interest in phylogenetic studies because of their relatedness to the vertebrate subphylum. During the early Precambrian period, the animal kingdom is believed to have diverged into two major groups, known as the deuterostomes and the protostomes. Both the echinoderms and the vertebrates are deuterostomes, while all other invertebrates are classified as protostomes. The two groups are distinguished on the basis of major differences in early development, which may suggest that they were derived from different ancestors. “Protostome” is Greek for “mouth first” and in this group, the mouth is derived from the embryonic blastopore. The blastopore gives rise to the anus in deuterostomes (“mouth later”), while the mouth develops as a separate invagination. The pattern of cell cleavage also varies in the two groups. Cells are oriented in a spiral pattern in protostomes, whereas the blastomeres are positioned directly upon one another in the deuterostomes, resulting in a radial cleavage pattern. Early separation of the blastomeres in deuterostomes gives rise to complete individuals; this type of development is known as indeterminate cleavage. It does not occur in protostomes, where removal of blastomeres results in deformed embryos. Cleavage is said to be determinate in the latter case. During later development, the two groups also differ in formation of mesoderm and the coelomic cavity.


Graft Rejection Coelomic Fluid Respiratory Tree Coelomic Cavity Cellular Defense System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bang, F. B., and Lemma, A., 1962, Bacterial infection and reaction to injury in some echinoderms, J. Insect. Pathol 4:401.Google Scholar
  2. Bertheussen, K., 1979, The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes, Exp. Cell Res. 120:373.PubMedCrossRefGoogle Scholar
  3. Bertheussen, K., and Seljelid, R., 1978, Echinoid phagocytes in vitro, Exp. Cell Res. 111:401.PubMedCrossRefGoogle Scholar
  4. Binyon, J., 1972, Physiology of Echinoderms, Pergamon Press, Elmsford, N.Y.Google Scholar
  5. Boolootian, R. A., 1962, The perivisceral elements of echinoderm body fluids, Am. Zool. 2:275.Google Scholar
  6. Boolootian, R. A., and Giese, A. C., 1958, Coelomic corpuscles of echinoderms, Biol. Bull. 115:53.CrossRefGoogle Scholar
  7. Boolootian, R. A., and Giese, A. C., 1959, Clotting of echinoderm coelomic fluid, J. Exp. Zool. 140:207.PubMedCrossRefGoogle Scholar
  8. Burnet, F. M., 1968, Evolution of the immune process in vertebrates, Nature (London) 218:426.CrossRefGoogle Scholar
  9. Chien, P. K., Johnson, P. T., Holland, N. D., and Chapman, F. A., 1970, The coelomic elements of sea urchins (Strongylocentrotus). IV. Ultrastructure of the coelomocyfes, Protoplasma 71:419.CrossRefGoogle Scholar
  10. Coffaro, K. A., 1978, Clearance of bacteriophage T4 in the sea urchin Lytechinus pictus, J. Invertebr. Pathol. 32:304.CrossRefGoogle Scholar
  11. Coffaro, K. A., 1979, Ph.D. dissertation, University of California, Santa Cruz.Google Scholar
  12. Coffaro, K. A., and Hinegardner, R. T., 1977, Immune response in the sea urchin Lytechinus pictus, Science 197:1389.PubMedCrossRefGoogle Scholar
  13. Cuénot, L., 1888, Études anatomiques et morphologique sur les ophiures, Arch. Zool. Exp. Gén. Sér. 2 6:3.Google Scholar
  14. Cuénot, L., 1891, Études sur le sang et les glandes lymphatiques dans la série animale (2° parties: Invertébrés), Arch. Zool. Exp. Gén. Sér. 2 9:593.Google Scholar
  15. Edds, K. T., 1977, Dynamic aspects of filopodial formation by reorganization of microfilaments, J. Cell Biol. 73:179.CrossRefGoogle Scholar
  16. Endean, R., 1958, The coelomocytes of Holothuria leucospilota, Q. J. Microsc. Sci. 99:47.Google Scholar
  17. Endean, R., 1966, The coelomocytes and coelomic fluids, in: Physiology of Echinodermata (R. A. Boolootian, ed.), pp. 301–328, Interscience, New York.Google Scholar
  18. Ferguson, J. C., 1966, Cell production in the Tiedemann bodies and haemal organs of the starfish, Asterias forbesi, Trans. Am. Microsc. Soc. 85:200.CrossRefGoogle Scholar
  19. Foettinger, A., 1880, Sur l’existence de l’hémoglobine chez les échinodermes, Arch. Biol. 1:405.Google Scholar
  20. Fontaine, A. R., and Lambert, P., 1973, The fine structure of the haemocyte of the holothurian, Cucumaria miniata (Brandt), Can. J. Zool. 51:323.CrossRefGoogle Scholar
  21. Fontaine, A. R., and Lambert, P., 1977, The fine structure of the leucocytes of the holothurian, Cucumaria miniata, Can. J. Zool. 55:1530.PubMedCrossRefGoogle Scholar
  22. Hetzel, H. R., 1963, Studies on holothurian coelomocytes. I. A survey of coelomocyte types, Biol. Bull. 125:289.CrossRefGoogle Scholar
  23. Hetzel, H. R., 1965, Studies on holothurian coelomocytes. II. The origin of coelomocytes and the formation of brown bodies, Biol. Bull. 128:102.CrossRefGoogle Scholar
  24. Hildemann, W. H., and Dix, T. G., 1972, Transplantation reactions of tropical Australian echinoderms, Transplantation 15:624.CrossRefGoogle Scholar
  25. Hildemann, W. H., Raison, R. L., Cheung, G., Hull, C. J., Akata, L., and Okamoto, J., 1977, Immunological specificity and memory in a scleractinian coral, Nature (London) 270:219.CrossRefGoogle Scholar
  26. Hildemann, W. H., Johnston, I. S., and Jokiel, P. L., 1979, Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges, Science 204:420.PubMedCrossRefGoogle Scholar
  27. Holland, N. D., Philips, J. H., and Giese, A. C., 1965, An autoradiographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus), Biol. Bull. 128:259.CrossRefGoogle Scholar
  28. Hyman, L., 1955, The Invertebrates: Echinodermata, the Coelomate Bilateria, McGraw-Hill, New York.Google Scholar
  29. Johnson, P. T., 1969a, The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coelomocytes, their morphology and dynamics in hanging drops, J. Invertebr. Pathol. 13:25.PubMedCrossRefGoogle Scholar
  30. Johnson, P. T., 1969b, The coelomic elements of sea urchins (Strongylocentrotus). II. Cytochemistry of the coelomocytes, Histochemie 17:213.PubMedCrossRefGoogle Scholar
  31. Johnson, P. T., 1969c, The coelomic elements of sea urchins (Strongylocentrotus). III. In vitro reaction to bacteria, J. Invertebr. Pathol. 13:42.PubMedCrossRefGoogle Scholar
  32. Johnson, P. T., and Beeson, R. J., 1966, In vitro studies on Patria miniata (Brandt) coelomocytes, with remarks on revolving cysts, Life Sci. 5:1641.PubMedCrossRefGoogle Scholar
  33. Johnson, P. T., and Chapman, F. A., 1970a, Abnormal epithelial growth in sea urchin spines (Strongylocentrotus franciscanus), J. Invertebr. Pathol. 16:116.CrossRefGoogle Scholar
  34. Johnson, P. T., and Chapman, F. A., 1970b, Infection with diatoms and other microorganisms in sea urchin spines (Strongylocentrotus franciscanus), J. Invertebr. Pathol. 16:268.CrossRefGoogle Scholar
  35. Kaneshiro, E. S., And Karp, R. D., 1980, The ultrastructure of coelomocytes of the sea star Dermasterias imbricata, Biol. Bull. 159:295.CrossRefGoogle Scholar
  36. Karp, R. D., and Hildemann, W. H., 1976, Specific allograft reactivity in the sea star Dertnasterias imbricata, Transplantation 22:434.PubMedCrossRefGoogle Scholar
  37. Karp, R. D., and Johns, J. D., 1978, Evolution of immune reactivity: Mitogenic responsiveness in the sea star Dermasterias imbricata, Abstracts, 78th Annual Meeting of the American Society for Microbiology, p. 48.Google Scholar
  38. Kindred, J. E., 1924, The cellular elements in the perivisceral fluid of echinoderms, Biol. Bull. 46:228.CrossRefGoogle Scholar
  39. Kuhl, W., 1937, Die zellelemente in der Liebeshohlenflüssigheit des seeigels Psammechinus miliaris und ihr Bewegungsphysiologiches Verhalten, Z. Zellforsch. Mikrosk. Anat. 27:1.CrossRefGoogle Scholar
  40. Kuhn, R., and Wallenfels, K., 1940, Echinochrome als prosthetiche Gruppen hochmolekular symplex in den Eiern von Arbacia pustulosa, Ber. Dtsch. Chem. Ges. 73:458.CrossRefGoogle Scholar
  41. Leclerc, M., 1973, Étude ultrastructurale des réactions D’Asterina gibbosa (Échinoderme, Astéride) au niveau de l’organe axial après injection de protéines, Ann. Immunol. (Inst. Pasteur) 124C:363.Google Scholar
  42. Liebman, E., 1950, The leucocytes of Arbacia punctulata, Biol. Bull 98:46.PubMedCrossRefGoogle Scholar
  43. Menton, D. N., and Eisen, A. Z., 1973, Cutaneous wound healing in the sea cucumber, Thyone briar eus, J. Morphol. 141:185.PubMedCrossRefGoogle Scholar
  44. Noble, P. B., 1970, Coelomocyte aggregation in Cucumaria frondosa. Effect of ethylenediaminetetraacetate, adenosine, and adenosine nucleotides, Biol. Bull. 139:549.PubMedCrossRefGoogle Scholar
  45. Reichensperger, A., 1912, Beiträge zur histologie und zum verlauf der regeneration bei crinoiden, Z. Wiss. Zool. 101:1.Google Scholar
  46. Reinisch, C. L., and Bang, F. B., 1971, Cell recognition reactions of the sea star (Asterias vulgaris) to the injection of amebocytes of the sea urchin (Arbacia punctulata), Cell. Immunol. 2:496.PubMedCrossRefGoogle Scholar
  47. Smith, A. C., 1978, A proposed phylogenetic relationship between sea cucumber polian vesicles and the vertebrate lymphoreticular system, J. Invertebr. Pathol. 31:353.PubMedCrossRefGoogle Scholar
  48. Stang-Voss, C., 1974, On the ultrastructure of invertebrate hemocytes: An interpretation of their role in comparative hematology, Contemp. Top. Immunobiol. 4:65.CrossRefGoogle Scholar
  49. Unkles, S. E., and Wardlaw, A. C., 1976, Antibacterial activity in the sea urchin Echinus esculentus, Soc. Gen. Microbiol. Proc. 3:182.Google Scholar
  50. van den Bossche, J. P., and Jangoux, M., 1976, Epithelial origin of starfish coelomocytes, Nature (London) 261:227.CrossRefGoogle Scholar
  51. Vethamany, V. G., and Fung, M., 1971, The fine structure of coelomocytes of the sea urchin Strongylocentrotus drobachiensis (Muller O. F.), Can. J. Zool. 50:77.CrossRefGoogle Scholar
  52. Vevers, H. G., 1963, Pigmentation of the echinoderms, Proc. XIV Int. Congr. Zool. Washington D.C. 3:120.Google Scholar
  53. Wardlaw, A. C., and Unkles, S. E., 1978, Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus, J. Invertebr. Pathol. 32:25.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard D. Karp
    • 1
  • Katherine A. Coffaro
    • 2
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Division of Natural Sciences, Thimann LaboratoriesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations