Advertisement

Cellular Defense Systems of the Arthropoda

  • Norman A. Ratcliffe
  • Keith N. White
  • Andrew F. Rowley
  • Julia B. Walters

Abstract

The arthropods are a vast assemblage of both aquatic and terrestrial animals, which together form a considerable proportion of the total number of species in the animal kingdom. As a group, they include such diverse organisms as insects, crustaceans, spiders, scorpions, millipedes, and centipedes which share in common a number of features such as a segmented body with paired appendages including jaws, a well-developed nervous system, chitinous cuticle, separate sexes, an open blood vascular system, and a lack of cilia in any part of the body (except Peripatus). Classically, zoologists believed that the arthropods represented a monophyletic group and classified these animals as the phylum Arthropoda. More recently, however, mounting evidence from fossil, embryo-logical, and anatomical studies has shown that the arthropods are probably polyphyletic, originating from several types of primitive polychaete annelids (see Manton, 1977, and Barnes, 1980). This should be borne in mind by comparative immunologists when investigating the phylogeny of the immune system in invertebrates.

Keywords

Granular Cell Nodule Formation Horseshoe Crab Cellular Defense Pinocytotic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, R. T., and Weinheimer, P. F., 1974, Hemagglutinins: Primitive receptor molecules operative in invertebrate defense mechanisms, in: Contemporary Topics in Immunobiology Volume IV, Invertebrate Immunology (E. L. Cooper, ed.), pp. 271–282, Plenum Press, New York.CrossRefGoogle Scholar
  2. Acton, R. T., Weinheimer, P. F., and Evans, E. E., 1969, A bactericidal system in the lobster Homarus americanus, J. Invertebr. Pathol. 13:463.CrossRefGoogle Scholar
  3. Akai, H., and Sato, S., 1971, An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori, J. Insect Physiol. 17:1665.CrossRefGoogle Scholar
  4. Ali, M., 1966, The histology of the gills of Carcinus maenas (L.) and other decapod Crustacea, Ph.D. thesis, University of Newcastle-upon-Tyne.Google Scholar
  5. Amirante, G. A., 1976, Production of heteragglutinins in hemocytes of Leucophaea maderae L., Experientia 32:526.PubMedCrossRefGoogle Scholar
  6. Anderson, J. F., and Magnarelli, L. A., 1980, Entomophthora tabanivora, a new pathogen in horseflies (Diptera: Tabanidae), J. Invertebr. Pathol. 34:263.CrossRefGoogle Scholar
  7. Anderson, J. W., and Conroy, D. A., 1968, The significance of disease in preliminary attempts to raise Crustacea in sea water, Proc. 3rd Symp. Mond. Comm. Off. Int. Epizool. Etud. Mai. Poissons 3:8.Google Scholar
  8. Anderson, R. S., 1974, Metabolism of insect hemocytes during phagocytosis, in: Contemporary Topics in Immunobiology, Volume 4, Invertebrate Immunology (E. L. Cooper, ed.), pp. 47–54, Plenum Press, New York.CrossRefGoogle Scholar
  9. Anderson, R. S., 1975, Phagocytosis by invertebrate cells in vitro: Biochemical events and other characteristics compared with vertebrate phagocytic systems, in: Invertebrate Immunity (K. Maramorosch and R. E. Shope, ed.), pp. 153–180, Academic Press, New York.Google Scholar
  10. Anderson, R. S., 1976a, Expression of receptors by insect macrophages, in: Phylogeny of Thymus and Bone MarrowBursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 27–34, Elsevier/North-Holland, Amsterdam.Google Scholar
  11. Anderson, R. S., 1976b, Macrophage function in insects, in: Proceedings, First International Colloquium on Invertebrate Pathology (T. A. Angus, P. Faulkner, and A. Rosenfield, eds.), pp. 215–19, Queens University Printing Dept., Canada.Google Scholar
  12. Anderson, R. S., 1977, Rosette formation by insect macrophages inhibited by cytochalasin B, Cell. Immunol. 29:331.PubMedCrossRefGoogle Scholar
  13. Anderson, R. S., and Cook, M. L., 1979, Induction of lysozyme-like activity in the hemolymph and hemocytes of an insect, Spodoptera eridania, J. Invertebr. Pathol. 33:197.CrossRefGoogle Scholar
  14. Anderson, R. S., and Good, R. A., 1976, Opsonic involvement in phagocytosis by mollusk hemocytes, J. Invertebr. Pathol. 27:57.PubMedCrossRefGoogle Scholar
  15. Anderson, R. S., Day, N. K. B., and Good, R. A., 1972, Specific hemagglutinin and a modulator of complement in cockroach hemolymph, Infect. Immun. 5:55.PubMedGoogle Scholar
  16. Anderson, R. S., Holmes, B., and Good, R. A., 1973a, In vitro bactericidal capacity of Blaberus craniifer hemocytes, J. Invertebr. Pathol. 22:127.CrossRefGoogle Scholar
  17. Anderson, R. S., Holmes, B., and Good, R. A., 1973b, Comparative biochemistry of phagocytozing insect hemocytes, Comp. Biochem. Physiol. B 46:595.PubMedGoogle Scholar
  18. Armstrong, J. A., and Hart, P. D., 1975, Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: Reversal of the usual non-fusion pattern and observations on bacterial survival, J. Exp. Med. 142:1.PubMedCrossRefGoogle Scholar
  19. Armstrong, P. B., 1977, Interaction of the motile blood cells of the horseshoe crab, Limulus: Studies on contact paralysis of pseudopodial activity and cellular overlapping in vitro, Exp. Cell Res. 107:127.CrossRefGoogle Scholar
  20. Armstrong, P. B., 1979, Motility of the Limulus blood cell, J. Cell Sci. 37:169.PubMedGoogle Scholar
  21. Armstrong, P. B., and Levin, J., 1979, In vitro phagocytosis by Limulus blood cells, J. Invertebr. Pathol. 34:145.CrossRefGoogle Scholar
  22. Arnold, J. W., 1974, The hemocytes of insects in: The Physiology of Insecta, Vol. 5, 2nd ed. (M. Rockstein, ed.), pp. 201–254, Academic Press, New York.CrossRefGoogle Scholar
  23. Arnold, J. W., 1979, Controversies about hemocyte types in insects, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 231–259, Cambridge University Press, London.CrossRefGoogle Scholar
  24. Arvy, L., 1952, Contribution a l’étude du sang et de la leucopoiése chez Pachygrapsus marmoratus Fabr., Ann. Sci. Nat. Zool. (Ser. 11) 14:1.Google Scholar
  25. Arvy, L., 1954, Présentation de documents sur la leucopoiése chez Peripatopsis capensis Grube, Bull. Soc. Zool Fr. 79:13.Google Scholar
  26. Ashhurst, D. E., 1979, Hemocytes and connective tissue: A critical assessment, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 319–331, Cambridge University Press, London.CrossRefGoogle Scholar
  27. Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1968, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48:187.CrossRefGoogle Scholar
  28. Baker, A. N., 1974, Some aspects of the economic importance of millipedes, Symp. Zool. Soc. London 32:621.Google Scholar
  29. Balbiani, C. R., 1886, Études bactériologiques sur les arthropods, Acad. Sci. Paris 103:952.Google Scholar
  30. Balss, H., 1944, Die blukorperchen in Klassen und Ordnungen des tierreichs (H. G. Bronn, ed.): 1(5) Decapoda, pp. 512–516, Akademische Vertagsges, Leipzig.Google Scholar
  31. Bang, F. B., 1956, A bacterial disease of Limulus polyphemus, Bull. Johns Hopkins Hosp. 98:325.PubMedGoogle Scholar
  32. Bang, F. B., 1967, Blood clot formation in the antenna of the hermit crab Pagurus longicarpus, Biol. Bull. 133:456.Google Scholar
  33. Bang, F. B., 1970, Cellular aspects of blood clotting in the seastar and hermit crab, J. Reticuloendothelial Soc. 7:167.Google Scholar
  34. Bang, F. B., 1971, A factor in crab amoebocytes which stimulates in vitro clotting of crab blood, J. Invertebr. Pathol. 18:280.PubMedCrossRefGoogle Scholar
  35. Barnes, R. D., 1980, Invertebrate Zoology, 4th ed., Saunders College/Holt, Rinehart & Winston, Philadelphia.Google Scholar
  36. Bauchau, A. G., 1981, Crustaceans, in: Invertebrate Blood Cells Vol. 2 (N. A. Ratcliffe and A. F. Rowley, eds.), pp. 385–420, Academic Press, London.Google Scholar
  37. Bauchau, A. G., and De Brouwer, M. B., 1972, Ultrastructure des hémocytes d’Eriocheir sinensis, Crustacé Decapodé Brachyoure, J. Microsc. (Paris) 15:171.Google Scholar
  38. Bauchau, A. G., and De Brouwer, M. B., 1974, Étude ultrastructurale de la coagulation de l’hémolymphe chez les crustacés, J. Microsc. (Paris) 19:37.Google Scholar
  39. Bauchau, A. G., and Plaquet, J. C., 1973, Variations du nombre des hémocytes chez les crustacés brachyoures, Crustaceana (Leiden) 24:215.CrossRefGoogle Scholar
  40. Bauchau, A. G., De Brouwer, M. B., Passelecq-Gérin, E., and Mengeot, J. C., 1975, Étude cytochemique des hémocytes chez Crustacés Décapodes Brachyoures, Histochemistry 45:101.PubMedCrossRefGoogle Scholar
  41. Bazin, F., 1979, Ultrastructure de l’organe hématopoïétique chez le crabe Carcinus maenas (L.) (Crustacea, Decapoda), Arch. Anat. Microsc. Morphol. Exp. 68:12.Google Scholar
  42. Bazin, F., and Demeusy, N., 1972, Processus de cicatrisation consécutif a l’autotomie d’un péréipode chez le crabe Carcinus maenas (L.), C.R. Acad. Sci. Ser. D 274:2603.Google Scholar
  43. Beaulaton, J., 1978, L’hemocytoïèse chez le ver à soie du Chêne Antheraea pernyi (Lépidoptère): Effets de l’ablation bilatérale des organes méso-et métathoraciques juxta-alaires sur l’évolution de l’hémogramme au cours du cinquième âge larvaire, C.R. Acad. Sci. Ser. D 287:713.Google Scholar
  44. Beaulaton, J., 1980, Physiologie des invertébrés—Effets de l’ablation des organes hémocytopoïetiques et de ligatures sur l’évolution de l’hémocytogramme différentiel chez Antheraea pernyi (Lépidoptère) au dernier âge larvaire, C.R. Acad. Sci. Ser. D 290:247.Google Scholar
  45. Bedwin, O.R., 1979a, The particulate basis of the resistance of a parasitoid to the defense reactions of its insect host, Proc. R. Soc. London Ser. B 205:267.CrossRefGoogle Scholar
  46. Bedwin, O. R., 1979b, An insect glycoprotein: A study of the particles responsible for the resistance of a parasitoid’s egg to the defence reactions of its insect host, Proc. R. Soc. London Ser. B 205:271.CrossRefGoogle Scholar
  47. Berlin, R. D., and Oliver, J. M., 1978, Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes, J. Cell Biol. 77:789.PubMedCrossRefGoogle Scholar
  48. Bernheimer, A. W., 1952, Haemagglutinins in caterpillar blood, Science 155:150.CrossRefGoogle Scholar
  49. Bernheimer, A. W., Caspari, E., and Kaiser, A. D., 1952, Studies on antibody formation in caterpillars, J. Exp. Zool. 119:23.CrossRefGoogle Scholar
  50. Biggar, W. D., and Sturgess, J. M., 1977, Role of lysozyme in the microbicidal activity of rat alveolar acrophages, Infect. Immun. 16:974.PubMedGoogle Scholar
  51. Blanc, P. L., 1967, Étude des elements figures de l’hemolymphe de quelques scorpions africains, Biol. Eco. Rapport particulier 14:1.Google Scholar
  52. Bodammer, J. E., 1978, Cytological observations on the blood and hemopoietic tissue in the crab Callinectes sapidus. I. The fine structure of hémocytes from intermolt animals, Cell Tissue Res. 187:79.PubMedCrossRefGoogle Scholar
  53. Bohn, H., 1975, Growth promoting effect of haemocytes on insect epidermis in vitro, J. Insect Physiol. 21:1283.CrossRefGoogle Scholar
  54. Bohn, H., 1977a, Differential adhesion of the haemocytes of Leucophaea maderae (Blattaria) to a glass surface, J. Insect Physiol. 23:185.PubMedCrossRefGoogle Scholar
  55. Bohn, H., 1977b, Conditioning of a glass surface for the outgrowth of insect epidermis (Leucophaea maderae, Blattaria), In Vitro 13:100.PubMedCrossRefGoogle Scholar
  56. Bohn, H., 1977c, Enzymatic and immunological characterization of the conditioning factor for epidermal outgrowth in the cockroach Leucophaea maderae, J. Insect Physiol. 23:1063CrossRefGoogle Scholar
  57. Boman, H. G., Faye, I., Pye, A., and Rasmusan, T., 1978, The inducible immunity system of giant silk moths, imComparative Pathobiology, Vol. 4 (L. A. Bulla, Jr., and T. C. Cheng, eds.), pp. 145–163, Plenum Press, New York.Google Scholar
  58. Bowen, R. C., 1967, Defense reactions of certain spirobolid millipedes to larval Macracanthorhynchus ingens, J. Parasitol. 53:1092.PubMedCrossRefGoogle Scholar
  59. Bowers, B., 1964, Coated vesicles in the pericardial cells of the aphid (Myzus persicae, Sulz.), Protoplasma 59:351.CrossRefGoogle Scholar
  60. Boy den, S., 1963, Cellular recognition of foreign matter, Int. Rev. Exp. Pathol. 2:311.Google Scholar
  61. Brahmi, Z., and Cooper, E. L. 1974, Characteristics of the agglutinin in the scorpion, Androctonus australis, in: Contemporary Topics in Immunobiology, Volume IV, Invertebrate Immunology (E. L. Cooper, ed.), pp. 261–270, Plenum Press, New York.CrossRefGoogle Scholar
  62. Brehélin, M., 1973, Presence d’un tissu hématopoiétique chez le Coleoptère Melolontha melolontha, Experientia 29:1539.CrossRefGoogle Scholar
  63. Brehélin, M., 1977, Etude Morphologique et Fonctionnelle des Hémocytes d’Insectes, Ph.D. thesis, University of Strasbourg, France.Google Scholar
  64. Brehélin, M., and Hoffmann, J. A., 1980, Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: Study of ultrastructure and clearance, J. Insect Physiol. 26:103.CrossRefGoogle Scholar
  65. Brehélin, M., Hoffmann, J. A., Matz, G., and Porte, A., 1975, Encapsulation of implanted foreign bodies by hemocytes in Locusta migratoria and Melolontha melolontha, Cell Tissue Res. 160:283.PubMedCrossRefGoogle Scholar
  66. Brehélin, M., Zachary, D., and Hoffmann, J. A., 1978, A comparative ultrastructural study of blood cells from nine insect orders, Cell Tissue Res. 195:45.PubMedCrossRefGoogle Scholar
  67. Brennan, B. B., and Cheng, T. C., 1975, Resistance of Monoliformis dubius to the defense reactions of the American cockroach Periplaneta americana, J. Invertebr. Pathol. 26:65.PubMedCrossRefGoogle Scholar
  68. Brewer, F. D., and Vinson, S. B., 1971, Chemicals affecting the encapsulation of foreign material in an insect, J. Invertebr. Pathol. 18:287.PubMedCrossRefGoogle Scholar
  69. Brinton, L. P., and Burgdorfer, W., 1971, Fine structure of normal hemocytes in Dermacentor andersoni Stiles (Acari: Ixodidae), J. Parasitol. 57:1110.PubMedCrossRefGoogle Scholar
  70. Brooks, W. M., Montrass, D. B., Sprenkel, R. K., and Carner, G., 1980, Microsporidioses of coleopterous pests of soybeans, J. Invertebr. Pathol. 35:93.CrossRefGoogle Scholar
  71. Bruntz, L., 1906a, L’organe phagocytaire des Polydesmus, C.R. Soc. Biol. 61:1.Google Scholar
  72. Bruntz, L., 1906b, La phagocytose chez les Diplopodes, Arch. Zool. Exp. Gén. 5:491.Google Scholar
  73. Bruntz, L., 1907, Étude sur les organes lymphoides phagocytaires et excréteurs des crustacés supérieurs, Arch. Zool. Exp. Gén. 7:1.Google Scholar
  74. Bucher, G. E., 1959, Bacteria of grasshoppers of western Canada. III. Frequency of occurrence, pathogenicity, J. Insect Pathol. 1:391.Google Scholar
  75. Bucher, G. E., 1960, Potential bacterial pathogens of insects and their characteristics, J. Insect Pathol. 2:172.Google Scholar
  76. Bucherl, W., 1939, Os quilopodes do Brasil, Mem. Inst. Butantan Sao Paulo 13:49.Google Scholar
  77. Cameron, G. R., 1934, Inflammation in the caterpillars of Lepidoptera, J. Pathol. Bacteriol. 38:441.CrossRefGoogle Scholar
  78. Campiglia, P. S., and Lavallard, R., 1975, Contributions a l’hématologie de Peripatus acacioi Marcus et Marcus (Onychorphore). II. Structure et ultrastructure de globularé pericardial, Ann. Sci. Nat. Zool. Biol. Anim. 17:93.Google Scholar
  79. Cantacuzène, J., 1923, Le problème de l’immunité chez les invertébrés, C.R. Soc. Biol. 88(Suppl.):48.Google Scholar
  80. Carton, Y., 1976, Isogenic, allogenic and xenogenic transplants in an insect species, Transplantation 21:17.PubMedCrossRefGoogle Scholar
  81. Cawthorn, R. J., 1980, The cellular responses of migratory grasshoppers (Melanoplus sanguinipes F.) and African desert locusts (Schistocerca gregaria L.) to Diptotriaena tricuspis (Nematoda: Diplotriaenoidea), Can. J. Zool. 58:109.CrossRefGoogle Scholar
  82. Cawthorn, R. J., and Anderson, R. C., 1977, Cellular reactions of field crickets (Acheta pennsylvanicus Burmeister) and German cockroaches (Blatella germanica L.) to Physaloptera maxillaris Molin (Nematoda: Physalopteroidea), Can. J. Zool. 55:368.CrossRefGoogle Scholar
  83. Charmantier-Daures, M., 1973, Activité de l’organe léucopoiétique de Pachygrapsus marmoratus au counts du cycle d’internue: Influence possible chez hormones pedonaulaires, Bull. Soc. Zool. Fr. 98:221.Google Scholar
  84. Cherbas, L., 1973, The induction of an injury reaction in cultured haemocytes from saturniid pupae, J. Insect Physiol. 19:2011.CrossRefGoogle Scholar
  85. Clark, M. K., and Dahm, P. A., 1973, Phenobarbital-induced, membrane-like scrolls in the oenocytes of Musca domestica Linnaeus, J. Cell Biol. 56:870.PubMedCrossRefGoogle Scholar
  86. Clarke, K. U., 1979, Visceral anatomy and arthropod phylogeny, in: Arthropod Phytogeny (A. P. Gupta, ed.), pp. 467–550, Van Nostrand-Reinhold, Princeton, N.J.Google Scholar
  87. Clarke, R. M., and Harvey, W. R., 1965, Cellular membrane formation by plasmatocytes of diapausing cercropia pupae, J. Insect Physiol. 11:161.CrossRefGoogle Scholar
  88. Cohen, E., 1968, Immunologic observations on the agglutinins of the hemolymph of Limulus polyphenols and Birgus latro, Trans. N.Y. Acad. Sci. 30:427.PubMedCrossRefGoogle Scholar
  89. Cohen, E. (ed.), 1979, Biomedical Applications of the Horseshoe Crab (Limulidae), Liss, New York.Google Scholar
  90. Cohen, E., Rowe, A. W., and Wissler, F. C., 1965, Heteroagglutinins of the horseshoe crab Limulus polyphemus, Life Sci. 4:2009.PubMedCrossRefGoogle Scholar
  91. Cohen, E., Ilodi, G. H. U., Brahmi, Z., and Minowada, J., 1979, The nature of cellular agglutinins of Androctonus australis (Saharan scorpion) serum, Dev. Comp. Immunol. 3:429.PubMedCrossRefGoogle Scholar
  92. Condon, W. J., and Gordon, R., 1977, Some effects of mermithid parasitism on the larval blackflies Prosimulium mixtum fuscum and Simulium venestum, J. Invertebr. Pathol. 29:56.CrossRefGoogle Scholar
  93. Cooper, E. L., 1976, Cellular recognition of allografts and xenografts in invertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 36–79, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  94. Cornick, J. W., and Stewart, J. E., 1968, Interaction of the pathogen Gaffkya homari with natural defense mechanisms of Homarus americanus, J. Fish. Res. Board Can. 25:695.CrossRefGoogle Scholar
  95. Cornick, J. W., and Stewart, J. E., 1973, Partial characterization of a natural agglutinin in the hemolymph of the lobster, Homarus americanus, J. Invertebr. Pathol. 21:255.PubMedCrossRefGoogle Scholar
  96. Cornick, J. W., and Stewart, J. E., 1978, Lobster (Homarus americanus) hemocytes: Classification, differential counts, and associated agglutinin activity, J. Invertebr. Pathol. 31:194.CrossRefGoogle Scholar
  97. Crites, J., 1964, A milliped, Narceus americanus, as a natural intermediate host of an acanthocephalan, J. Parasitol. 50:293.PubMedCrossRefGoogle Scholar
  98. Crossley, A. C. S., 1968, The fine structure and mechanism of breakdown of larval intersegmental muscles in the blowfly, Calliphora erythrocephala (Meig.), J. Insect Physiol. 14:1389.CrossRefGoogle Scholar
  99. Crossley, A. C. S., 1972, The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala, Tissue Cell 4:529.PubMedCrossRefGoogle Scholar
  100. Crossley, A. C. S., 1975, The cytophysiology of insect blood, Adv. Insect Physiol. 11:117.CrossRefGoogle Scholar
  101. Crossley, A. C. S., 1979, Biochemical and ultrastructural aspects of synthesis, storage and secretion in hemocytes, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 423–475, Cambridge University Press, London.CrossRefGoogle Scholar
  102. Cuénot, L., 1895, Études physiologiques sur les Orthoptères, Arch. Biol. 14:293.Google Scholar
  103. Cuénot, L., 1897, Les globules sanquins et les organes lymphoides des invertébrés (Revue critique et nouvelles recherches), Arch. Anat. Microsc. Morphol. Exp. 1:153.Google Scholar
  104. Cuénot, L., 1898, Études physiologiques sur les Oligochètes, Arch. Biol. 15:114.Google Scholar
  105. Dali, W., 1964, Studies on the physiology of a shrimp Metapenaeus mastersii (Hashwell) (Crustacea: Decapoda: Penaeidae). I. Blood constituents, Aust. J. Mar. Freshwater Res. 15:145.CrossRefGoogle Scholar
  106. Dali, W., 1965, Studies on the physiology of a shrimp, Metapenaeus sp. (Crustacea: Decapoda: Penaeidae). III. Composition and structure of the integument, Aust. J. Mar. Freshwater Res. 16:13.CrossRefGoogle Scholar
  107. Dean, J. M., and Vernberg, F. J., 1966, Hypothermia of blood of crabs, Comp. Biochem. Physiol. B 17:19.CrossRefGoogle Scholar
  108. Dean, R. T., 1977, Lysosomes, Arnold, London.Google Scholar
  109. Decleir, W., and Vercauteren, R., 1965, Activité phenoloxydasique dans les leucocytes de crabe au cours du cycle d’intermue, Cah. Biol. Mar. 6:163.Google Scholar
  110. Deevey, G. B., 1941, The blood cells of the Haitian tarantula and their relation to the moulting cycle, J. Morphol. 68:457.CrossRefGoogle Scholar
  111. Diehl, P. A., 1975, Synthesis and release of hydrocarbons by the oenocytes of the desert locust, Schistocerca gregaria, J. Insect Physiol. 21:1237.CrossRefGoogle Scholar
  112. Donion, W. C., and Wemyss, C. T., 1976, Analysis of the hemagglutinin and general protein element of the hemolymph of the West Indian leaf cockroach, Blaberus craniifer, J. Invertebr. Pathol. 28:191.CrossRefGoogle Scholar
  113. Dorn, A., and Romer, F., 1976, Structure and function of prothoracic glands and oenocytes in embryos and last larval instars of Oncopeltus fasciatus Dallas (Insecta, Heteroptera), Cell Tissue Res. 171:331.PubMedCrossRefGoogle Scholar
  114. Drach, P., 1930, Étude sur le système branchial des crustacés décapodes, Arch. Anat. Microsc. Morphol. Exp. 26:83.Google Scholar
  115. Drach, P., 1939, Mue et cycle d’intermue chez les crustacés décapodes, Ann. Inst. Oceanogr. 19:103.Google Scholar
  116. Duboscq, D., 1896, La termination des vaisseaux et les corpuscules de Kowalevsky chez les Scolopendrides, Zool. Anz. 19:1.Google Scholar
  117. Duboscq, D., 1899, Recherches sur les Chilopodes, Thesis, University of Paris.Google Scholar
  118. Ducháteau, G., and Florkin, M., 1954, La coagulation du sang des arthropodes. IV. Sur le fibrinogène et sur la coaguline musculaire du homard, Bull. Soc. Chim. Biol. 36:295.PubMedGoogle Scholar
  119. Dumont, J. N., Anderson, E., and Winner, G., 1966, Some cytologie characteristics of the hemocytes of Limulus during clotting, J. Morphol. 119:181.PubMedCrossRefGoogle Scholar
  120. Durand, J., 1973, Ph.D. thesis, University of Montpellier.Google Scholar
  121. Durliat, M., and Vranckx, R., 1978, Changes in water-soluble proteins from integument of Astacus leptodactylus during the molt cycle, Comp. Biochem. Physiol. B 59:123.Google Scholar
  122. Edwards, G. A., and Challice, C. E., 1960, The ultrastructure of the heart of the cockroach Blatella germanica, Ann. Entomol. Soc. Am. 53:369.Google Scholar
  123. Egusa, S., and Veda, T., 1972, A Fusarium sp. associated with black gill disease of the Kuruma prawn Penaeus japonicus (Bate), Bull. Jpn. Soc. Sci. Fish 38:1253.CrossRefGoogle Scholar
  124. Ermin, R., 1939, Über Bau & Funktion der Lymphocyten bei Insekten (Periplaneta americana L.), Z. Zellforsch. Mikrosk. Anat. 29:613.CrossRefGoogle Scholar
  125. Evans, E. E., Painter, B., Evans, M. L., Weinheimer, P., and Acton, R. T., 1968, An induced bacterieidin in the spiny lobster, Panulirus argus, Proc. Soc. Exp. Biol. Med. 128:394.PubMedGoogle Scholar
  126. Evans, E. E., Weinheimer, P. F., Painter, B., Acton, R. T., and Evans, M. L., 1969a, Secondary and tertiary response of the induced bacterieidin from the West Indian spiny lobster Panulirus argus, J. Bacteriol. 98:943.PubMedGoogle Scholar
  127. Evans, E. E., Cushing, J. E., Sawyer, S., Weinheimer, P. F., Acton, R. T., and McNeely, J. L., 1969b, Induced bactericidal response in the spiny lobster, Panulirus interruptus, Proc. Soc. Exp. Biol. Med. 132:111.PubMedGoogle Scholar
  128. Fahrenbach, W. F., 1970, The cyanoblast: Hemocyanin formation in Limulus polyphemus, J. Cell Biol. 44:445.PubMedCrossRefGoogle Scholar
  129. Feir, D., 1979, Multiplication of hemocytes, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 67–83, Cambridge University Press, London.CrossRefGoogle Scholar
  130. Fisher, R. C., 1961, A study in insect multiparasitism. II. The mechanism and control of competition for possession of the host, J. Exp. Biol. 38:605.Google Scholar
  131. Fitzgerald, S. W., and Ratcliffe, N. A., 1982, Evidence for the presence of subpopulations of Arenicola marina (L.) coelomocytes identified by their selective response towards gram +ve and gram -ve bacteria, Dev. Comp. Immunol, 6:23.PubMedCrossRefGoogle Scholar
  132. Flemister, S. G., 1959, Histophysiology of gill and kidney of the crab Ocypode albicans, Biol. Bull. 116:37.CrossRefGoogle Scholar
  133. Fontaine, C. T., and Lightner, D. V., 1973, Observations on the process of wound repair in penaid shrimp, J. Invertebr. Pathol. 22:23.CrossRefGoogle Scholar
  134. Fontaine, C. T., and Lightner, D. V., 1974, Observations on the phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp Penaeus setiferus, J. Invertebr. Pathol. 24:141.PubMedCrossRefGoogle Scholar
  135. Fontaine, C. T., Bruss, R. G., Sanderson, I. A., and Lightner, D. V., 1975, Histopathological response to turpentine in the white shrimp Penaeus setiferus, J. Invertebr. Pathol. 25:321.CrossRefGoogle Scholar
  136. Foster, C. A., and Howse, H. D., 1978, A morphological study on gills of the brown shrimp Penaeus aztecus, Tissue Cell 10:77.PubMedCrossRefGoogle Scholar
  137. Franz, V., 1904, Ueber die Struktur des Herzens und die Entstehung von Blutzellen bei Spinnen, Zool. Anz. 27:192.Google Scholar
  138. Furman, R. M., and Pistole, T. G., 1976, Bactericidal activity of hemolymph from the horseshoe crab, Limulus polyphemus, J. Invertebr. Pathol 28:245.CrossRefGoogle Scholar
  139. Gaffin, S. L., 1976, The clotting of the lysed white cells of Limulus induced by endotoxin-I: Preparation and characterization of clot-forming proteins, Biorheology 13:273.PubMedGoogle Scholar
  140. Gagen, S. J., and Ratcliffe, N. A., 1976, Studies on the in vivo cellular reactions and fate of injected bacteria in Galleria mellonella and Vieris brassicae larvae, J. Invertebr. Pathol. 28:17.CrossRefGoogle Scholar
  141. George, W. C., and Nichols, J., 1948, A study of the blood of some Crustacea, J. Morphol. 83:425.PubMedCrossRefGoogle Scholar
  142. Ghiretti-Magaldi, A., Milanesi, C., and Tognon, G., 1977, Haemopoiesis in Crustacea Decapoda: Origin and production of haemocytes and cyanocytes of Carcinus maenas, Cell Differ. 6:167.CrossRefGoogle Scholar
  143. Gibert, J., 1972, Contribution a l’étude de l’hémolymphe de Niphargus virei Chevreux (Amphipode hypogé): ses constituants leur origine et leurs fonctions, Crustaceana Suppl. (Leiden) 3:342.Google Scholar
  144. Gilbride, K. J., and Pistole, T. G., 1979, Isolation and characterization of a bacterial agglutinin in the serum of Limulus polyphemus, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 525–535, Liss, New York.Google Scholar
  145. Glavind, D., 1948, Studies on the Coagulation of Crustacean Blood, pp. 7–137, Nyt. Nordish, Forlag. Arnold Busck, Copenhagen.Google Scholar
  146. Gnatzy, W., 1970, Struktur und Entwicklung des Integuments und der Oenocyten von Culex pipiens L. (Dipt.), Z. Zellforsch. Mikrosk, Anat. 110:401.CrossRefGoogle Scholar
  147. Götz, P., and Vey, A., 1974, Humoral encapsulation in Diptera (Insecta): Defense reactions of Chironomus larvae against fungi, Parasitology 68:1.CrossRefGoogle Scholar
  148. Grasse, P. P., and Lesperon, L., 1935, Accumulation de colorants acides chez le ver à soie par des tissus différents selon la voie d’accès, C.R. Acad. Sci. 201:618.Google Scholar
  149. Grégoire, Ch., 1952, Sur la coagulation du sang des araignées, Arch. Int. Physiol. 60:100.CrossRefGoogle Scholar
  150. Grégoire, Ch., 1955, Blood coagulation in arthropods. VI. A study of phase contrast microscopy of blood reactions in vitro in Onychophora and in various groups of arthropods, Arch. Biol. 66:489.Google Scholar
  151. Grégoire, Ch., 1957, Studies by phase contrast microscopy on distribution of patterns of hemolymph coagulation in insects, Smithson. Misc. Collect. 134(6):1.Google Scholar
  152. Grégoire, Ch., 1970, Haemolymph coagulation in arthropods, in: The Haemostatic Mechanism in Man and Other Animals (R. G. Macfarlane, ed.), Symp. Zool. Soc. London 27:45.Google Scholar
  153. Grégoire, Ch., 1974, Hemolymph coagulation, in: The Physiology of Insecta, Vol. 5, 2nd ed. (M. Rockstein, ed.), pp. 309–360, Academic Press, New York.CrossRefGoogle Scholar
  154. Grégoire, Ch., and Goffinet, G., 1979, Controversies about the coagulocyte, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 189–231, Cambridge University Press, London.CrossRefGoogle Scholar
  155. Grégoire, Ch., and Jolivet, P., 1957, Coagulation du sang chez les Arthropodes (VIII). Réactions du sang et de l’hémolymphe in vitro, étudiées au microscope à contrast de phase, chez 210 espèces d’Arthropodes africains, Explor. Parc Nat. Albert deux Sér. 24:1.Google Scholar
  156. Grimstone, A. V., Rotheram, S., and Sait, G., 1967, An electron-microscope study of capsule formation by insect blood cells, J. Cell Sci. 2:281.PubMedGoogle Scholar
  157. Gupta, A. P., 1968, Hemocytes of Scutigerella immaculata and the ancestry of Insecta, Ann. Entomol. Soc. Am. 61:1028.Google Scholar
  158. Gupta, A. P., 1979a, Arthropod hemocytes and phylogeny, in: Arthropod Phylogeny, pp. 669–735, Van Nostrand-Reinhold, Princeton, N.J.Google Scholar
  159. Gupta, A. P., 1979b, Hemocyte types: Their structures, synonymies, interrelationships and tax-onomic significance, in: Insect Hemocytes: Development, Forms, Functions and Techniques, pp. 85–127, Cambridge University Press, London.CrossRefGoogle Scholar
  160. Gupta, A. P., 1979c, Identification key for hemocyte types in hanging-drop preparations, in: Insect Hemocytes: Development, Forms, Functions and Techniques, pp. 527–530, Cambridge University Press, London.CrossRefGoogle Scholar
  161. Hamann, A., 1975, Stress induced changes in cell-titre of crayfish haemolymph, Z. Naturforsch. 30:850.Google Scholar
  162. Hardy, S. W., Fletcher, T. C., and Olafsen, J. A., 1977, Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 59–66, Elsevier/North-Holland, Amsterdam.Google Scholar
  163. Hardy, W. B., 1892, Blood corpuscles of the Crustacea, together with a suggestion as to the origin of crustacean fibrin-ferment, J. Physiol. (London) 13:165.Google Scholar
  164. Harvey, W. R., and Williams, C. M., 1961, The injury metabolism of the cecropia silkworm. I. Biological amplication of the effects of localized injury, J. Insect Physiol. 7:81.CrossRefGoogle Scholar
  165. Hearing, V. J., 1969, Demonstration of acid phosphatase activity in the granules of the blood cells of the lobster, Homarus americanus, Chesapeake Sci. 10:24.CrossRefGoogle Scholar
  166. Hearing, V. J., and Vernick, S. H., 1967, Fine structure of the blood cells of the lobster, Homarus americanus, Chesapeake Sci. 8:170.CrossRefGoogle Scholar
  167. Henry, J. E., 1967, Nosema acridophagous sp. n., a microsporidian isolated from grasshoppers, J.Invertebr. Pathol. 9:331.CrossRefGoogle Scholar
  168. Herberts, C., Andrieux, N., and De Frescheville, J., 1978, Variations des protéines de l’hemolymphe et de Thypoderme au cours du cycle de mue chez Carcinus mediterraneus Czerniavsky: Analyses électrophoretique et immunochimique, Can. J. Zool. 56:1735.CrossRefGoogle Scholar
  169. Hinks, C. F., and Arnold, J. W., 1977, Haemopoiesis in Lepidoptera. II. The role of the haemopoietic organs, Can. J. Zool. 55:1740.CrossRefGoogle Scholar
  170. Hoarau, F., 1976, Ultrastructure des hémocytes de l’oniscoide, Helleria brevicornis Ebner (Crustacés Isopode), J. Microsc. Biol. Cell 27:47.Google Scholar
  171. Hoffmann, D., Brehélin, M., and Hoffmann, J. A., 1974, Modifications of the hemogram and of the hemocytopoietic tissue of male adults of Locusta migratoria (Orthoptera) after injection of Bacillus thuringiensis, J. Invertebr. Pathol. 24:238.PubMedCrossRefGoogle Scholar
  172. Hoffmann, J. A., 1970, Les organes hématopoiétique de deux Insectes Orthoptères: Locusta migratoria et Gryllus bimaculatus, Z. Zellforsch. Mikrosk. Anat. 106:451.PubMedCrossRefGoogle Scholar
  173. Hoffmann, J. A., 1972, Modifications of the haemogramme of larval and adult Locusta migratoria after selective X-irradiations of the haemocytopoietic tissue, J. Insect Physiol. 18:1639.CrossRefGoogle Scholar
  174. Hoffmann, J. A., Zachary, D., Hoffmann, D., Brehélin, M., and Porte, A., 1979, Postembryonic development and differentiation: Hemopoietic tissues and their functions in some insects, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 29–67, Cambridge University Press, London.CrossRefGoogle Scholar
  175. Hollande, A. C., 1922, La cellule pericardiale des insectes, Arch. Anat. Microsc. 18:85.Google Scholar
  176. Hollande, A. C., 1930, La digestion des bacilles tuberculeux par les leucocytes du sang des chenilles, Arch. Zool. Exp. Gén. 70:231.Google Scholar
  177. Holme, R., and Solum, N. O., 1973, Electron microscopy of the gel protein formed by clotting of Limulus polyphemus hemocyte extracts, J. Ultrastruct, Res. 44:329.CrossRefGoogle Scholar
  178. Holmes, B., Page, A. R., Winhorst, D. B., Willie, P. G., White, J. G., and Good, R. A., 1968, The metabolic pattern and phagocytic function of leukocytes from children with chronic granulomatous disease, Ann. N.Y. Acad. Sci. 155:888.CrossRefGoogle Scholar
  179. Horn, E. C., and Kerr, M. S., 1969, The hemolymph proteins of the blue crab Callinectes sapidus. I. Hemocyanins and certain other major protein constituents, Comp. Biochem. Physiol. 29:493.PubMedCrossRefGoogle Scholar
  180. Hubert, M., Chassard-Bouchard, C., and Bocquet-Védrine, J., 1976, Aspects ultrastructuraux des hémocytes de Carcinus maenas L. (Crustacé Décapode), parasité par Sacculina carcini Thompson (Crustacé Cirripède): Activité réactionnelle, genèse de collagéne, C.R. Acad. Sci. Ser. D 283:789.Google Scholar
  181. Huger, A., 1960, Untersuchungen zur Pathologie iner Mikrosporodiose von Agrotis segetum (Schiff.) (Lepidopt, Noctuidae), verursacht durch Nosema perizoides nov. spec, Z. Pflanzenker. (Pflanzenpathol.) Pflanzenschutz 67:65.Google Scholar
  182. Iyer, G. Y. N., Islam, M. F., and Quastel, J. M., 1961, Biochemical aspects of phagocytosis, Nature (London) 192:535.CrossRefGoogle Scholar
  183. Jenkin, C.R., 1963, Heterophile antigens and their significance in the host-parasite relationship, Adv. Immunol. 3:351.CrossRefGoogle Scholar
  184. Jenkin, C. R., 1976, Factors involved in the recognition of foreign material by phagocytic cells from invertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 80–97, Blackwell, Oxford.Google Scholar
  185. Johannsen, R., Anderson, R. S., Good, R. A., and Day, N. K., 1973, A comparative study of the bactericidal activity of horseshoe crab (Limulus polyphemus) hemolymph and vertebrate serum, J. Invertebr. Pathol. 22:372.PubMedCrossRefGoogle Scholar
  186. Johnson, P. T., 1976, Bacterial infection in the blue crab Callinectes sapidus: Course of infection and histopathology, J. Invertebr. Pathol. 28:25.CrossRefGoogle Scholar
  187. Johnson, P. T., 1977, Paramoebiasis in the blue crab Callinectes sapidus, J. Invertebr. Pathol. 29:308.CrossRefGoogle Scholar
  188. Johnson, T. W., 1970, Fungi in marine crustaceans, in: Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 405–408, American Fisheries Society, Washington, D.C.Google Scholar
  189. Johnston, M. A., Elder, H. Y., and Davies, P. S., 1973, Cytology of Carcinus haemocytes and their function in carbohydrate metabolism, Comp. Biochem. Physiol. A 46:569.CrossRefGoogle Scholar
  190. Jones, J. C., 1956, The hemocytes of Sarcophaga bullata Parker, J. Morphol. 99:233.CrossRefGoogle Scholar
  191. Jones, J. C., 1962, Current concepts concerning insect hemocytes, Am. Zool. 2:209.Google Scholar
  192. Jones, J. C., 1970, Hemocytopoiesis in insects, in: Regulation of Hematopoiesis (A. S. Gordon, ed.), pp. 7–65, Appleton, New York.Google Scholar
  193. Jones, J. C., 1977, The Circulatory System of Insects, Thomas, Springfield, Ill.Google Scholar
  194. Jones, J. C., 1979, Pathways and pitfalls in the classification and study of insect hemocytes, in: Insect Hemocytes: Development, Forms, Functions and Techinques (A. P. Gupta, ed.), pp. 279–301, Cambridge University Press, London.CrossRefGoogle Scholar
  195. Jones, J. C., and Liu, D. P., 1968, A quantitative study of mitotic divisions of haemocytes of Galleria mellonella larvae, J. Insect Physiol. 14:1053.Google Scholar
  196. Jones, J. C., and Liu, D. P., 1969, The effects of ligaturing Galleria mellonella larvae on total haemocyte counts and on mitotic indices among haemocytes, J. Insect Physiol. 15:1703.CrossRefGoogle Scholar
  197. Jones, S. E., and Bell, W. J., 1982, Cell-mediated immune-type response of the American cockroach, Dev. Comp. Immunol. 6:35.PubMedCrossRefGoogle Scholar
  198. Kawanishi, C. Y., Splittstoesser, C. M., and Tashiro, H., 1978, Infection of the European chaffer, Amphimallon majalis, by Bacillus popillae. II. Ultrastructure, J. Invertebr. Pathol. 31:91.CrossRefGoogle Scholar
  199. Kehoe, J. M., Kaplan, R., and Steven, S.-L. Li., 1979, Functional implications of the covalent structure of limulin: An overview, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 617–623, Liss, New York.Google Scholar
  200. Kessel, R. G., 1961, Electron microscope observations on the sub-microscopic vesicular component of the suboesophageal body and pericardial cells of the grasshopper Melanoplus differential differential, Thomas., Exp. Cell Res. 22:108.PubMedCrossRefGoogle Scholar
  201. Kessel, R. G., 1962, Light and electron microscope studies on the pericardial cells of nymphal and adult grasshoppers, Melanoplus differentialis differential, Thomas., J. Morphol. 110:79.CrossRefGoogle Scholar
  202. King, P. E., 1973, Pycnogonids, Hutchinson, London.Google Scholar
  203. Kitano, H., 1969a, Defensive ability of Apanteles glomeratus L. (Hymenoptera: Braconidae) to the hemocytic reaction of Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae), Appl. Entomol. Zool. 4(1):51.Google Scholar
  204. Kitano, H., 1969b, Experimental studies on the parasitism of Apanteles glomeratus L. with special reference to its encapsulation-inhibiting capacity, Bull. Tokyo Gekugei Univ. 21(4):95.Google Scholar
  205. Kitano, H., 1974, Effects of the parasitization of a braconid, Apanteles, on the blood of the host, Pieris, J. Insect Physiol. 20:315.CrossRefGoogle Scholar
  206. Kitano, H., and Nakatsuji, N., 1978, Resistance of Apanteles eggs to the haemocytic encapsulation by their habitual host, Pieris, J. Insect Physiol. 24:261.CrossRefGoogle Scholar
  207. Klebanoff, S. J., 1968, Myeloperoxidase-halide-hydrogen peroxide antibacterial system, J. Bacteriol. 95:2131.PubMedGoogle Scholar
  208. Klebanoff, S. J., 1975, Antimicrobial systems of the polymorpho-nuclear leukocyte, in: The Phagocytic Cell in Host Resistance (J. Bellanti and D. M. Dayton, eds.), pp. 45–56, Raven Press, New York.Google Scholar
  209. Kollmann, M., 1908, Recherches sur les leucocytes et le tissue lymphoïde des Invertébrés, Ann. Sci. Nat. Zool. Biol. Anim. Ser. 9 8:1.Google Scholar
  210. Kollmann, M., 1910, Notes sur les functions de la glande lymphatique des scorpionides, Bull. Soc. Zool. Fr. 35:25.Google Scholar
  211. Kowalewsky, A. O., 1894, Investigations of the lymphatic systems of insects and myriapods, [in Russian], Izv. Imp. Akad. Nuak 4:1.Google Scholar
  212. Kowalewsky, A., 1895, Étude des glandes lymphatiques de quelques Myriapodes, Arch. Zool. Exp. Gén. 3:3.Google Scholar
  213. Krishnan, G., 1968, The Millipede Thyropygus, C.S.I.R. Zod. Mem. I, Publications and Information Directorate, New Delhi.Google Scholar
  214. Krishnan, G., and Ravindranath, M. H., 1973, Blood cell phenoloxidase of millipedes, J. Insect Physiol. 19:647.CrossRefGoogle Scholar
  215. Kümmel, G., 1973, Filtration structures in excretory systems, a comparison, in: Comparative Physiology (L. Bolls, K. Schmidt-Nielsen, and S. H. P. Madrell, eds.), pp. 221–240, North-Holland, Amsterdam.Google Scholar
  216. Kurstak, E., Goring, I., and Vago, C., 1969, Cellular defense in an arthropod in response to infection with a Salmonella typhimurium strain, Antonie van Leeuwenhoek J. Microbiol. Serol. 35:45.CrossRefGoogle Scholar
  217. Lackie, A. M., 1976, Evasion of the haemocytic defense reaction of certain insects by larvae of Hymenolepis diminuta (Cestoda), Parasitology 73:97.PubMedCrossRefGoogle Scholar
  218. Lackie, A. M., 1979, Cellular recognition of foreignness in two insect species, the American cockroach and the desert locust, Immunology 36:909.PubMedGoogle Scholar
  219. Lackie, A. M., 1980, Invertebrate immunity, Parasitology 80:393.PubMedCrossRefGoogle Scholar
  220. Lai-Fook, J., 1968, The fine structure of wound repair in an insect (Rhodnius prolixus), J. Morphol. 124:37.PubMedCrossRefGoogle Scholar
  221. Lai-Fook, J., 1970, Haemocytes in the repaid of wounds in an insect (Rhodnius prolixus), J. Morphol. 139:79.CrossRefGoogle Scholar
  222. Laki, K., 1972, Our ancient heritage in blood clotting and some of its consequences, Ann. N.Y. Acad. Sci. 202:297.PubMedCrossRefGoogle Scholar
  223. Landureau, J. C., and Grellet, P., 1975, Obtention de lignées permanentes d’hémocytes de Blatte: Caractéristiques physiologiques et ultrastructurales, J. Insect Physiol. 21:137.CrossRefGoogle Scholar
  224. Landureau, J. C., Grellet, P., and Bernier, I., 1972, Caractérisation, en culture in vitro, d’un rôle inconnu des hémocytes des Insectes: Sa signification physiologique, C.R. Acad. Sci. Ser. D 274:2200.Google Scholar
  225. Lavallard, R., and Campiglia, S., 1975, Contributions à l’hématologie de Peripatus acacioi Marcus et Marcus (Onychophore). I. Structure et ultrastructure de hémocytes, Ann. Sci. Nat. Zool. (Ser. 12) 17:67.Google Scholar
  226. Lazarenko, T., 1925, Beiträge zure vergleichenden Histologie des Blutes und des Bindehewebes. II. Die morphologische. Bedeutung der Bhitund Bindegewebe-elemente der Insekten, Z. Zellforsch. Mikrosk. Anat. 3:409.Google Scholar
  227. Lea, M. S., and Gilbert, L. E., 1961, Cell division in diapausing silkworm pupae, Am. Zool. 1:368.Google Scholar
  228. Leake, E. S., and Myrvik, Q. N., 1970, Interaction of lysosome-like structures and phagosomes in normal and granulomatous alveolar macrophages, J. Reticuloendothelial Soc. 8:407.Google Scholar
  229. Levin, J., 1967, Blood coagulation and endotoxin in invertebrates, Fed. Proc. 26:1707.Google Scholar
  230. Levin, J., 1979, The reaction between bacterial endotoxin and amebocyte lysate, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 131–146, Liss, New York.Google Scholar
  231. Levin, J., and Bang, F. B., 1964a, The role of endotoxin in the extracellular coagulation of Limulus blood, Bull. Johns Hopkins Hosp. 115:265.PubMedGoogle Scholar
  232. Levin, J., and Bang, F. B., 1964b, A description of cellular coagulation in the Limulus, Bull. Johns Hopkins Hosp. 115:337.Google Scholar
  233. Levin, J., and Bang, F. B., 1968, Clottable protein in Limulus: Its localization and kinetics of its coagulation by endotoxin, Thromb. Diath. Haemorrh. 19:186.PubMedGoogle Scholar
  234. Lewis, W. J., and Vinson, S. B., 1968, Immunological relationships between the parasite Cardiochiles nigriceps Viereck and certain Heliothis species, J. Insect Physiol. 14:613.PubMedCrossRefGoogle Scholar
  235. Lison, L., 1942, Recherches sur l’histophysiologie comparée de l’excrétion chez les arthropodes, Acad. R. Belg. Mem. Cl. Sci. Collect. 8 19:1.Google Scholar
  236. Liu, T.-Y., Seid, R. C., Tai, J. Y., Liang, S.-M., Sakmar, T. P., and Robbins, J. B., 1979, Studies on Limulus lysate coagulating system, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 147–158, Liss, New York.Google Scholar
  237. Lochhead, J. H., and Lochhead, M. S., 1941, Studies on the blood cells and related tissues in Artemia, J. Morphol. 68:593.CrossRefGoogle Scholar
  238. Locke, M., 1966, Cell interactions in the repair of wounds in an insect (Rhodnius prolixus), J. Insect Physiol. 12:389.PubMedCrossRefGoogle Scholar
  239. Locke, M., 1969, The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect, Tissue Cell 1:103.PubMedCrossRefGoogle Scholar
  240. Loeb, L., 1902, On the blood lymph cells and inflammatory processes of Limulus, J. Med. Res. 7:145.PubMedGoogle Scholar
  241. Loeb, L., 1920, The movements of the amoebocytes and the experimental production of amoebocyte (cell fibrin) tissue, Wash. Univ. Stud. 8:3.Google Scholar
  242. Lorand, J., Urayama, T., and Lorand, L., 1966, Transglutaminase as a blood clotting enzyme, Biochem. Biophys. Res. Commun. 23:828.PubMedCrossRefGoogle Scholar
  243. Lorand, L., 1972, Fibrinoligase: The fibrin-stabilizing factor system of blood plasma, Ann. N.Y. Acad. Sci. 202:6.PubMedCrossRefGoogle Scholar
  244. Lynn, D. C., and Vinson, S. B., 1977, Effects of temperature, host age, and hormones upon the encapsulation of Cardiochiles nigriceps eggs by Heliothis spp., J. Invertebr. Pathol. 29:50.CrossRefGoogle Scholar
  245. Manier, J. F., 1954, Essnis de culture des Eccirina fexilis Leger et Duboscq trichomycetic endocommensaux des Glomeris marinata Villers, Ann. Parasitol. Hum. Comp. 29:265.PubMedGoogle Scholar
  246. Manton, S. M., 1977, The Arthropoda: Habits, Functional Morphology, and Evolution, Oxford University Press, London.Google Scholar
  247. Manton, S. M., and Heatley, N. G., 1937, VI. Studies on the Onychophora. II. The feeding, digestion, excretion and food storage of Peripatopsis, Philos. Trans. R. Soc. London Ser. B 227:411.CrossRefGoogle Scholar
  248. Marchalonis, J. J., and Edelman, G. M., 1968, Isolation ad characterization of a natural hemagglutinin from Limulus polyphemus, J. Mol. Biol. 32:453.CrossRefGoogle Scholar
  249. Marrec, M., 1944, L’organ lymphocytogéne des crustacés decapods: Son activité cyclique, Bull. Inst. Océanogr. 41:1.Google Scholar
  250. Marthy, H. J., 1974, Evidence and significance of a haemagglutinin from the skin of cephalopods, Z. Immunitaetsforsch. 148:225.Google Scholar
  251. Matsumoto, K., and Tongu, Y., 1966, Effects of eyestalkectomy on the leucopoietic organ of a crab, Zool. Mag. Tokyo 75:203.Google Scholar
  252. Maynard, D. M., 1960, Circulation and heart function, in: The Physiology of Crustacea, Vol. I (T. H. Waterman, ed.), pp. 161–226, Academic Press, New York.Google Scholar
  253. McCumber, L. J., and Clem, L. W., 1977, Recognition of viruses and xenogeneic proteins by the blue crab, Callinectes sapidus. I. Clearance and organ concentration, Dev. Comp. Immunol. 1:5.PubMedCrossRefGoogle Scholar
  254. McKay, D., and Jenkin, C. R., 1969, Immunity in the invertebrates. II. Adaptive immunity in the crayfish (Parachaeraps bicarinatus), Immunology 17:127.PubMedGoogle Scholar
  255. McKay, D., and Jenkin, C. R., 1970a, Immunity in the invertebrates: The role of serum factors in the phagocytosis of erythrocytes by haemocytes of the freshwater crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 48:139.PubMedCrossRefGoogle Scholar
  256. McKay, D., and Jenkin, C. R., 1970b, Immunity in the invertebrates: Correlation of the phagocytic activity of haemocytes with the resistance to infection in the crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 48:609.PubMedCrossRefGoogle Scholar
  257. McKay, D., and Jenkin, C. R., 1970c, Immunity in the invertebrates: The fate and distribution of bacteria in normal and immunised crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 48:599.PubMedCrossRefGoogle Scholar
  258. McKay, D., Jenkin, C. R., and Rowley, D., 1969, Immunity in the invertebrates. I. Studies on the natural occurring haemagglutinins in the fluid from invertebrates, Aust. J. Exp. Biol. Med. Sci. 47:125.PubMedCrossRefGoogle Scholar
  259. McKay, D., Jenkin, C. R., and Tyson, C. J., 1973, Effect of endotoxin on resistance of the freshwater crayfish (Parachaeraps bicarinatus) to infection, J. Infect. Dis. 18(Suppl. 1):165.CrossRefGoogle Scholar
  260. Mengeot, J. C., Bauchau, A. G., De Brouwer, M. B., and Passelecq-Gérin, E., 1976, Separation des granules presents dans les hémocytes des crustacés par exocytose provoque, Comp. Biochem. Physiol. A 54:145.CrossRefGoogle Scholar
  261. Mengeot, J. C., Bauchau, A. G., De Brouwer, M. B., and Passelecq-Gérin, E., 1977, Isolement des granules des hémocytes de Homarus vulgaris: Examens electrophoretiques du contenu proteique des granules, Comp. Biochem. Physiol. A 58:393.CrossRefGoogle Scholar
  262. Mercer, E. M., and Nicholas, W. L., 1967, The ultrastructure of the capsule of the larval stages of Moniliformis dubius (Acanthocephala) in the cockroach Periplaneta americana, Parasitology 57:169.CrossRefGoogle Scholar
  263. Merril, D. P., and Glenister, R. F., 1980, Crayfish hepatopancreas peroxidase: Absence of a microbiocidal function, J. Invertebr. Pathol. 35:214.CrossRefGoogle Scholar
  264. Merril, D. P., Mongeon, S. A., and Fisher, G., 1979, Distribution of fluorescent latex particles following clearance from the haemolymph of the freshwater crayfish Orconectes virilis (Hagen), J. Comp. Physiol. 132:363.Google Scholar
  265. Messner, B., 1972, Die rolle des Tyrosinase-Systems in der Immunologischen Abwehirreaktion bei Wirbellosen. I. Insecten, Zool. Jahrb. Physiol. 76:368.Google Scholar
  266. Metalnikov, S., 1924, Phagocytose et réactions des cellules dans l’immunité, Ann. Inst. Pasteur Paris 38:787.Google Scholar
  267. Metchnikoff, E., 1884, Über eine sprosspilzkrankheit de Daphnien, Arch. Pathol. Anat. 96:177.CrossRefGoogle Scholar
  268. Midttun, B., and Jensen, H., 1978, Ultrastructure of oenocytoids from two spiders, Pisaura mirabilis and Trochosa terricola (Araneae), Acta Zool. (Stockholm) 59:157.CrossRefGoogle Scholar
  269. Millot, J., 1926, Contribution à l’histophysiologie des aranéides, Bull. Biol. Fr. Belg. 8:1.Google Scholar
  270. Mills, R. P., and King, R., 1965, The pericardial cells of Drosophila melanogaster, Q. J. Microsc. Sci. 106:261.Google Scholar
  271. Mix, M. C., and Sparks, A. K., 1980, Hemocyte classification and differential counts in the Dunge-ness crab, Cancer magister, J. Invertebr. Pathol. 35:134.CrossRefGoogle Scholar
  272. Möhrig, W., and Schittek, D., 1979, Phagocytosis-stimulating mediators in insects, Acta Biol. Med. Ger. 38:953.PubMedGoogle Scholar
  273. Möhrig, W., Schittek, D., and Hanschke, R., 1979a, Investigations on cellular defense reactions with Galleria mellonella against B. thuringiensis, J. Invertebr. Pathol. 34:207.CrossRefGoogle Scholar
  274. Möhrig, W., Schittek, D., and Hanschke, R., 1979b, Immunological activation of phagocytic cells in Galleria mellonella, J. Invertebr. Pathol. 34:84.CrossRefGoogle Scholar
  275. Monpeyssin, M., and Beaulaton, J. C., 1978, Hemocytopoiesis in the oak silkworm, Antheraea pernyi and some other Lepidoptera, J. Ultrastruct. Res. 64:35.PubMedCrossRefGoogle Scholar
  276. Mosesson, M. W., Wolfenstein-Todel, C., Levin, J., and Bertrand, O., 1979, Characterization of amebocyte coagulogen from the horseshoe crab (Limulus polyphemus), Thromb. Res. 14:765.PubMedCrossRefGoogle Scholar
  277. Murer, E.H., Levin, J., and Holme, R., 1975, Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab, J. Cell. Physiol. 86:533.PubMedCrossRefGoogle Scholar
  278. Myhrman, R., and Bruner-Lorand, J., 1970, Lobster muscle transpeptidase, Methods Enzymol. 19:765.CrossRefGoogle Scholar
  279. Nachum, R., Watson, S. W., Sullivan, J. D., Jr., and Siegel, S. E., 1979, Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: Preliminary observations with heat-derived extracts of Limulus amoebocyte lysate, J. Invertebr. Pathol. 33:290.PubMedCrossRefGoogle Scholar
  280. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K., 1976a, A clottable protein (coagulogen) of horseshoe crab hemocytes: Structural changes of its polypeptide chain during gel formation, J. Biochem. 80:649.PubMedGoogle Scholar
  281. Nakamura, S., Iwanaga, S., Harada, T., and Niwa, M., 1976b, A clottable protein (coagulogen) from amoebocyte lysate of the Japanese horseshoe crab (Tachypleus tridentatus): Its isolation and biochemical properties, J. Biochem. 80:1011.PubMedGoogle Scholar
  282. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K., 1976c, Amino acid sequence studies on the fragments produced from horseshoe crab coagulogen during gel formation: Homologies with primate fibrinopeptide B, Biochem. Biophys. Res. Commun. 72:902.PubMedCrossRefGoogle Scholar
  283. Nappi, A. J., 1970, Defense reactions of Drosophila euronotus larvae against the hymenopterous parasite Pseudeucoila bochei, Parasitology 66:23.CrossRefGoogle Scholar
  284. Nappi, A. J., 1973, The role of melanization in the immune reaction of larvae of Drosophila algonquin against Pseudeucoila bochei, Parasitology 66:23.CrossRefGoogle Scholar
  285. Nappi, A. J., 1974, Insect hemocytes and the problems of host recognition of foreignness, in: Contemporary Topics in Immunobiology, Volume 4, Invertebrate Immunology (E. L. Cooper, ed.), pp. 207–224, Plenum Press, New York.CrossRefGoogle Scholar
  286. Nappi, A. J., 1975, Parasite encapsulation in insects, in: Invertebrate Immunity (K. Maramorosch and R. E. Shope, eds.), pp. 293–326, Academic Press, New York.Google Scholar
  287. Nappi, A. J., and Stoffolano, J. G., Jr., 1972, Distribution of haemocytes in larvae of Musca domestica and Musca autumnalis and possible Chemotaxis during parasitization, J. Insect. Physiol. 18:169.CrossRefGoogle Scholar
  288. Nappi, A. J., and Streams, F. A., 1969, Hemocytic reactions of Drosophila melanogaster to the parasites Pseudeucoila mellipes and P. bochei, J. Insect Physiol. 15:1551.CrossRefGoogle Scholar
  289. Nelson, E., Blinzinger, K., and Hager, H., 1962, Ultrastructural observations on phagocytosis of bacteria in experimental (E. coli) meningitis, J. Neuropathol. Exp. Neurol. 21:155.PubMedCrossRefGoogle Scholar
  290. Nemhauser, I., Ornberg, R., and Cohen, W. D., 1980, Marginal bands in blood cells of invertebrates, J. Ultrastruct. Res. 70:308.PubMedCrossRefGoogle Scholar
  291. Neuwirth, M., 1974, Granular hemocytes, the main phagocytic blood cells in Calpodes ethlius (Lepidoptera, Hesperiidae), Can. J. Zool. 52:783.PubMedCrossRefGoogle Scholar
  292. Nutting, W. L., 1951, A comparative anatomical study of the heart and accessory structures of the orthopteriod insects, J. Morphol. 89:501.CrossRefGoogle Scholar
  293. Oppenheim, J. D., Nachbar, M. S., Salton, M. R. J., and Aull, F., 1974, Purification of a hemagglutinin from Limulus polyphemus by affinity chromatography, Biochem. Biophys. Res. Commun. 58:1127.PubMedCrossRefGoogle Scholar
  294. Ornberg, R. L., and Reese, T. S., 1979, Secretion in Limulus amebocytes is by exocytosis, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 125–130, Liss, New York.Google Scholar
  295. Osman, S. E., 1978, Die Wirkung der sekrete der weiblichen Genital anhangsdrüsen von Pimpla turionellae L. (Hym., Ichneumonidae) auf die Hämocyten und die Einkapselungsreaktion von Wirtspuppen, Z. Parasitenkd. 57:89.CrossRefGoogle Scholar
  296. Palm, N. B., 1954, The elmination of injected vital dyes from the blood in myriapodes, Ark. Zool. 6:219.Google Scholar
  297. Paterson, W. D., and Stewart, J. E., 1974, In vitro phagocytosis by hemocytes of the American lobster (Homarus americanus), J. Fish. Res. Board Can. 31:1051.CrossRefGoogle Scholar
  298. Paterson, W. D., Stewart, J. E., and Zwicker, B. M., 1976, Phagocytosis as a cellular immune response mechanism in the American lobster Homarus americanus, J. Invertebr. Pathol. 27: 95.PubMedCrossRefGoogle Scholar
  299. Pauley, G. B., Granger, G. A., and Krassner, S. M., 1971, Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica, J. Invertebr. Pathol. 18:207.CrossRefGoogle Scholar
  300. Pistole, T. G., 1976, Naturally occurring bacterial agglutinin in the serum of the horseshoe crab, Limulus polyphemus, J. Invertebr. Pathol. 28:153.CrossRefGoogle Scholar
  301. Pistole, T. G., 1978, Broad-spectrum bacterial agglutinating activity in the serum of the horseshoe crab, Limulus polyphemus, Dev. Comp. Immunol. 2:65.CrossRefGoogle Scholar
  302. Pistole, T. G., 1979, Bacterial agglutinins from Limulus polyphemus—An overview in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 547–553, Liss, New York.Google Scholar
  303. Pistole, T. G., and Britko, J. L., 1978, Bactericidal activity of amebocytes from the horseshoe crab, Limulus polyphemus, J. Invertebr. Pathol. 31:376.CrossRefGoogle Scholar
  304. Pistole, T. G., and Furman, R. M., 1976, Serum bactericidal activity in the horseshoe crab, Limulus polyphemus, Infect. Immun. 14:888.Google Scholar
  305. Poinar, G. O., Jr., 1971, Use of nematodes for microbial control of insects, in: Microbial Control of Insects and Mites (H. D. Burges and N. W. Hussey, eds.), pp. 181–203, Academic Press, New York.Google Scholar
  306. Poinar, G. O., Jr., 1974, Insect immunity to parasitic nematodes, in: Contemporary Topics in Immunobiology, Volume 4, Invertebrate Immunology (E. L. Cooper, ed.), pp. 167–178, Plenum Press, New York.CrossRefGoogle Scholar
  307. Poinar, G. O., Jr., and Hess, R. T., 1977, Cellular responses in decapod crustaceans to Ascarophis sp. (Spirurida: Nematoda), in: Comparative Pathobiology, Volume 3, Invertebrate Immune Responses (L. A. Bulla, Jr., and T. C. Cheng, eds.), pp. 135–154, Plenum Press, New York.Google Scholar
  308. Poinar, G. O., Jr., Leutenegger, R., and Götz, P., 1968, Ultrastructure of the formation of a melanotic capsule in Diabrotica (Coleoptera) in response to a parasitic nematode (Mermithidae), J. Ultrastruct. Res. 25:293.PubMedCrossRefGoogle Scholar
  309. Poll, M., 1934, Recherches histophysiologiques sur les tubes de malpighi du Tenebrio molitor L., Rec. Inst. Zool. Torley-Rousseau 5:73.Google Scholar
  310. Porter, K., Kenyon, K., and Badenhausen, S., 1967, Specialisations of the unit membrane, Protoplasma 63:262.PubMedCrossRefGoogle Scholar
  311. Price, C. D., and Ratcliffe, N. A., 1974, A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders, Z. Zellforsch. Mikrosk, Anat. 147:537.CrossRefGoogle Scholar
  312. Prior, C., and Perry, C. M., 1980, Infection of Promecotheca papuana with Synnematium jonesii, J. Invertebr. Pathol. 35:14.CrossRefGoogle Scholar
  313. Prowse, R. H., and Tait, N. N., 1969, In vitro phagocytosis by amoebocytes from the haemolymph of Helix aspersa (Müller). I. Evidence for opsonic factor(s) in serum, Immunology 17:437.PubMedGoogle Scholar
  314. Pyefinch, K. A., 1947, Biology of ship fouling, New Biology (London) 3:128.Google Scholar
  315. Rabin, H., 1970, Hemocytes, hemolymph and defense reactions in crustaceans, J. Reticuloendothelial Soc. 7:195.Google Scholar
  316. Rabinovitch, M., and De Stefano, M. J., 1970, Interactions of red cells with phagocytes of the wax moth (Galleria mellonella L.) and mouse, Exp. Cell Res. 59:272.PubMedCrossRefGoogle Scholar
  317. Ratcliffe, N. A., and Gagen, S. J., 1976, Cellular defense reactions of insect hemocytes in vivo: Nodule formation and development in Galleria mellonella and Pieris brassicae larvae, J. Invertebr. Pathol. 28:373.CrossRefGoogle Scholar
  318. Ratcliffe, N. A., and Gagen, S. J., 1977, Studies on the in vivo cellular reactions of insects: An ultrastructural analysis of nodule formation in Galleria mellonella, Tissue Cell 9:73.CrossRefGoogle Scholar
  319. Ratcliffe, N. A., and Rowley, A. F., 1974, In vitro phagocytosis of bacteria by insect blood cells, Nature (London) 252:391.CrossRefGoogle Scholar
  320. Ratcliffe, N. A., and Rowley, A. F., 1975, Cellular defense reactions of insect hemocytes in vitro. Phagocytosis in a new suspension culture system, J. Invertebr. Pathol. 26:225.PubMedCrossRefGoogle Scholar
  321. Ratcliffe, N. A., and Rowley, A. F., 1979a, Role of hemocytes in defense against biological agents, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 331–415, Cambridge University Press, London.CrossRefGoogle Scholar
  322. Ratcliffe, N. A., and Rowley, A. F., 1979b, A comparative synopsis of the structure and function of the blood cells of insects and other invertebrates, Dev. Comp. Immunol. 3:189.PubMedCrossRefGoogle Scholar
  323. Ratcliffe, N. A., and Rowley, A. F., 1982, Opsonic activity of insect hemolymph, in: Comparative Pathobiology (L. A. Bulla, Jr., and T. C. Cheng, eds.), in press.Google Scholar
  324. Ratcliffe, N. A., Gagen, S. J., Rowley, A. F., and Schmit, A. R., 1976a, Studies on insect cellular defense mechanisms and aspects of the recognition of foreignness, in: Proceedings, First International Colloquium on Invertebrate Pathology (T. A. Angus, P. Faulkner, and A. Rosenfield, eds.), Queen’s University Printing Department, Kingston, Ontario.Google Scholar
  325. Ratcliffe, N. A., Gagen, S. J., Rowley, A. F., and Schmit, A. R., 1976b, The role of granular hemocytes in the cellular defense reactions of the wax moth Galleria mellonella, in: Proceedings, Sixth European Congress on Electron Microscopy (Y. Ben-Shaul, ed.), pp. 295–297, Tal International, Israel.Google Scholar
  326. Ravindranath, M. H., 1970, Comparative studies on the blood of chilopods and diplopods in relation to cuticle formation, Ph.D. thesis, University of Madras.Google Scholar
  327. Ravindranath, M. H., 1973, The hemocytes of a millipede, Thyropygus poseidon, J. Morphol. 141:257.CrossRefGoogle Scholar
  328. Ravindranath, M. H., 1974a, The hemocytes of a scorpion Palamnaeus swammerdami, J. Morphol. 144:1.CrossRefGoogle Scholar
  329. Ravindranath, M. H., 1974b, The hemocytes of an isopod Ligia exotica Roux, J. Morphol. 144: 11.PubMedCrossRefGoogle Scholar
  330. Ravindranath, M. H., 1975a, Effects of temperature on the morphology of hemocytes and coagulation process in the mole crab Emerita (=Hippa) asiatica, Biol. Bull. 148:286.CrossRefGoogle Scholar
  331. Ravindranath, M. H., 1975b, Effects of hydrogen ion concentration on the morphology of hemocytes of the mole-crab Emerita asiatica, Biol. Bull. 149:226.CrossRefGoogle Scholar
  332. Ravindranath, M. H., 1977a, A comparative study of the morphology and behaviour of granular haemocytes of arthropods, Cytologia 42:743.PubMedCrossRefGoogle Scholar
  333. Ravindranath, M. H., 1977b, The circulating haemocyte population of the mole crab Emerita (=Hippa) asiatica (Milne-Edwards), Biol. Bull. 152:415.CrossRefGoogle Scholar
  334. Ravindranath, M. H., 1981, Onychophorans and myriapods, in: Invertebrate Blood Cells Vol. 2 (N. A. Ratcliffe and A. F. Rowley, eds.), pp. 327–354, Academic Press, New York.Google Scholar
  335. Reade, P. C., 1968, Phagocytosis in invertebrates, Aust. J. Exp. Biol. Med. Sci. 46:219.PubMedCrossRefGoogle Scholar
  336. Renwrantz, L. R., and Uhlenbruck, G., 1974, Blood-group-like substances in some marine invertebrates. III. Glycoproteins with blood-group A specificity in the cephalopods Sepia offinalis L. and Loligo vulgaris Lam, J. Exp. Zool. 188:65.PubMedCrossRefGoogle Scholar
  337. Ries, E., 1932, Experimentelle Symbiosestudien. II. Mycetomtransplantationen, Z. Morphol. Oekol. Tiere 25:184.CrossRefGoogle Scholar
  338. Rizki, M. T. M., 1962, Experimental analysis of hemocyte morphology in insects, Am. Zool. 2:247.Google Scholar
  339. Rizki, M. T. M., and Rizki, R. M., 1976, Cell interactions in hereditory melanotic tumor formation in Drosophila, in: Proceedings, First International Colloquium on Invertebrate Pathology (T. A. Angus, P. Faulkner, and A. Rosenfield, eds.), pp. 137–141, Queen’s University Printing Department, Kingston, Ontario.Google Scholar
  340. Roche, A. C., and Monsigny, M., 1974, Purification and properties of limulin: A lectin (agglutinin) from hemolymph of Limulus polyphemus, Biochim. Biophys. Acta 371:242.PubMedCrossRefGoogle Scholar
  341. Roche, A. C., and Monsigny, M., 1979, Limulin (Limulus polyphemus lectin): Isolation, physiochemical properties, sugar specificity and mitogenic activity, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 603–616, Liss, New York.Google Scholar
  342. Roche, A. C., Perrodon, Y., Halpern, B., and Monsigny, M., 1977, Limulin (Limulus polyphemus lectin): Mitogenic effect on human peripheral lymphocytes, Eur. J. Immunol. 7:263.PubMedCrossRefGoogle Scholar
  343. Roitt, I., 1974, Essential Immunology, 2nd ed., Blackwell, Oxford.Google Scholar
  344. Romer, F., 1974, Ultrastructural changes of the oenocytes of Gryllus bimaculatus DEG (Saltatoria, Insecta) during the moulting cycle, Cell Tissue Res. 151:27.PubMedCrossRefGoogle Scholar
  345. Rosen, B., 1967, Shell diseases of the blue crab, Callinectes sapidus, J. Invertebr. Pathol 9:348.PubMedCrossRefGoogle Scholar
  346. Rosen, B., 1970, Shell disease of aquatic crustaceans, in: Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 405–408, American Fisheries Society, Washington, D.C.Google Scholar
  347. Rosenberg, J., 1978, Zur Ultrastruktur der nephrozyten von erdlaufern (Chilopoda: Pleurostigmorphora: Geophilomorpha), Entomol. Germ. 4:24.Google Scholar
  348. Rostam-Abadi, H., and Pistole, T. G., 1979, Sites on the lipopolysaccharide molecule reactive with Limulus agglutinins, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 537–545, Liss, New York.Google Scholar
  349. Rotheram, S. M., 1967, Immune surface of eggs of a parasitic insect, Nature (London) 214:700.CrossRefGoogle Scholar
  350. Rotheram, S. M., 1973a, The surface of the egg and first-instar larva of Nemeritis, Proc. R. Soc. London Ser. B 183:179.CrossRefGoogle Scholar
  351. Rotheram, S. M., 1973b, The surface of the egg of a parasitic insect. II. The ultrastructure of the particulate coat on the egg of Nemeritis, Proc. R. Soc. London Ser. B 183:195.CrossRefGoogle Scholar
  352. Rowley, A. F., 1977a, The role of the haemocytes of Clitumnus extradentatus in haemolymph coagulation, Cell Tissue Res. 182:513.PubMedCrossRefGoogle Scholar
  353. Rowley, A. F., 1977b, Studies on insect cellular defences in vitro, Ph.D. thesis, University of Wales.Google Scholar
  354. Rowley, A. F., and Ratcliffe, N. A., 1976a, The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro, Tissue Cell 8:437.PubMedCrossRefGoogle Scholar
  355. Rowley, A. F., and Ratcliffe, N. A., 1976b, An ultrastructural study of the in vitro phagocytosis of Escherichia coli by the hemocytes of Calliphora erythrocephala, J. Ultrastruct. Res. 55:193.PubMedCrossRefGoogle Scholar
  356. Rowley, A. F., and Ratcliffe, N. A., 1976c, The intracellular fate of bacteria and latex particles in insect blood cells, in: Proceedings, Sixth European Congress on Electron Microscopy (Y. Ben-Shaul, ed.), pp. 301–303, Tal International, Israel.Google Scholar
  357. Rowley, A. F., and Ratcliffe, N. A., 1978, A histological study of wound healing and hemocyte function in the wax moth, Galleria mellonella, J. Morphol. 157:181.CrossRefGoogle Scholar
  358. Rowley, A. F., and Ratcliffe, N. A., 1979, An ultrastructural and cytochemical study of the interaction between latex particles and the haemocytes of the wax moth Galleria mellonella in vitro, Cell Tissue Res. 199:127.PubMedCrossRefGoogle Scholar
  359. Rowley, A. F., and Ratcliffe, N. A., 1980, Insect erythrocyte agglutinins. In vitro opsonization experiments with Clitumnus extradentatus and Periplaneta americana haemocytes, Immunology 40:483.PubMedGoogle Scholar
  360. Rowley, A. F., and Ratcliffe, N. A., 1981, Insects, in: Invertebrate Blood Cells Vol. 2 (N. A. Ratcliffe and A. F. Rowley, eds.), pp. 421–488. Academic Press, London.Google Scholar
  361. Ryan, M., and Nicholas, W. L., 1972, The reaction of the cockroach, Periplaneta americana, to the injection of foreign particulate material, J. Invertebr. Pathol. 19:299.CrossRefGoogle Scholar
  362. Salt, G., 1956, Experimental studies in insect parasitism. IX. The reactions of a stick insect to an alien parasite, Proc. R. Soc. London Ser. B 146:93.CrossRefGoogle Scholar
  363. Salt, G., 1957, Experimental studies in insect parasitism. X. The reactions of some endopterygote insects to an alien parasite, Proc. R. Soc. London Ser. B 147:167.CrossRefGoogle Scholar
  364. Salt, G., 1959, The fate of a braconid parasite, Rogas testaceus, in four species of hosts, Biologia (Lahore) 5(1):84.Google Scholar
  365. Salt, G., 1960, Experimental studies in insect parasitism. XI. The haemocytic reaction of a caterpillar under varied conditions, Proc. R. Soc. London Ser. B 151:446.CrossRefGoogle Scholar
  366. Salt, G., 1965, Experimental studies in insect parasitism. XIII. The haemocytic reaction of a caterpillar to eggs of its habitual parasite, Proc. R. Soc. London Ser. B 162:303.CrossRefGoogle Scholar
  367. Salt, G., 1970, The Cellular Defence Reactions of Insects, Cambridge Monographs in Experimental Biology, No. 16, Cambridge University Press, London.CrossRefGoogle Scholar
  368. Sanchez, S., 1959, Le développement des pycnogonides et leurs affinités avec les arachnides, Arch. Zool. Exp. Gén. 98:1Google Scholar
  369. Sato, S., Akai, H., and Sawada, H., 1976, An ultrastructural study of capsule formation by Bombyx hemocytes, Annot. Zool. Jpn. 49:177.Google Scholar
  370. Savory, T., 1964, Arachnida, Academic Press, New York.Google Scholar
  371. Sawyer, T. K., 1969, Preliminary study on the epizoology and host-parasite relationship of Paramoeba sp. in the blue crab Callinectes sapidus, Proc. Natl. Shellfish. Assoc. 59:60.Google Scholar
  372. Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.PubMedGoogle Scholar
  373. Sbarra, A. J., Jacobs, A. A., Strauss, R. R., Paul, B., and Mitchell, G. E., 1971, The biochemical and antimicrobial activities of phagocytizing cells, Am. J. Clin. Nutr. 24:272.PubMedGoogle Scholar
  374. Schapiro, H. C., Mathewson, J. H., Steenbergen, J. F., Kellogg, S., Ingram, C., Nievengarten, G., and Rabin, H., 1974, Gaffkemia in the California spiny lobster Panulirus interruptus: Infection and immunization, Aquaculture 3:403.CrossRefGoogle Scholar
  375. Schapiro, H. C., Steenbergen, J. F., and Fitzgerald, Z. A., 1977, Hemocytes and phagocytosis in the American Lobster, Homarus americanus, in: Comparative Pathobiology, Volume 3, Invertebrate Immune Responses (L. A. Bulla, Jr., and T. C. Cheng, eds.), pp. 126–134, Plenum Press, New York.Google Scholar
  376. Scharrer, B., 1972, Cytophysiological features of hemocytes in cockroaches, Z. Zellforsch. Mikrosk. Anat. 129:301.PubMedCrossRefGoogle Scholar
  377. Schmit, A. R., 1979, Studies on encapsulation in insects, Ph.D. thesis, University of Wales.Google Scholar
  378. Schmit, A. R., and Ratcliffe, N. A., 1977, The encapsulation of foreign tissue implants in Galleria mellonella larvae, J. Insect Physiol. 23:175.PubMedCrossRefGoogle Scholar
  379. Schmit, A. R., and Ratcliffe, N. A., 1978, The encapsulation of Araldite implants and recognition of foreignness in Clitumnus extradentatus, J. Insect Physiol. 24:511.CrossRefGoogle Scholar
  380. Schmit, A. R., Rowley, A. F., and Ratcliffe, N. A., 1977, The role of Galleria mellonella hemocytes in melanin formation, J. Invertebr. Pathol. 29:232.CrossRefGoogle Scholar
  381. Schutz, F. N., 1925, Physiologie de körpersäfte: Crustaceen, in: Handbuch der Vergleichenden Physiologie (H. Winterstein, ed.), pp. 669–746, Fischer, Jena.Google Scholar
  382. Scott, M. T., 1971a, Recognition of foreignness in invertebrates. II. In vitro studies of cockroach phagocytic hemocytes, Immunology 21:817.PubMedGoogle Scholar
  383. Scott, M. T., 1971b, Recognition of foreignness in invertebrates. I. Transplantation studies using the American cockroach (Periplaneta americana), Transplantation 11:78.PubMedCrossRefGoogle Scholar
  384. Seifert, B., 1932, Anatomie und biologie des Diplopoden Strongylosoma pallipes (Oliv.), Z. Morph. Oekol. Tiere 25:362.CrossRefGoogle Scholar
  385. Seifert, G., and Rosenberg, J., 1976, Die Ultrastruktur der nephrozyten von Orthomorpha gracilis (C. L. Koch, 1847) (Diplopoda, Strongylosomidae), Zoomorphologie 85:23.CrossRefGoogle Scholar
  386. Seifert, G., and Rosenberg, J., 1977, Die Ultrastruktur der nephrocyten von Peripatoides kuckarti (Saenger, 1869) (Onychophora, Peripatopsidae), Zoomorphologie 86:169.CrossRefGoogle Scholar
  387. Seitz, K.-A., 1972, Zur histologie and feinstruktur des Herzens und der Hämocyten von Cupiennius salei Keys (Araneae Ctenidae). II. Zur Funktionsmorphologie der Phagocyten, Zool. Jahrb. Anat. 89:385.Google Scholar
  388. Sewell, M. T., 1955, Lipoprotein cells in the blood of Carcinus maenas, and their cycle of activity correlated with the moult, Q. J. Microsc. Sci. 96:73.Google Scholar
  389. Shapiro, M., 1979, Changes in hemocyte populations, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 475–525, Cambridge University Press, London.CrossRefGoogle Scholar
  390. Sherman, R. G., 1973, Ultrastructurally different hemocytes in a spider, Can. J. Zool. 51:1155.CrossRefGoogle Scholar
  391. Sherman, R. G., 1981, Chelicerates, in: Invertebrate Blood Cells Vol. 2 (N. A. Ratcliffe and A. F. Rowley, eds.), pp. 355–384, Academic Press, London.Google Scholar
  392. Shirodkar, M. V., Warwick, A., and Bang, F. B., 1960, The in vitro reaction of Limulus amebocytes to bacteria, Biol. Bull. 118:324.CrossRefGoogle Scholar
  393. Shishikura, F., and Sekiguchi, K., 1979, Comparative studies on hemocytes and coagulogens of the Asian and the American horseshoe crabs, in: Biomedical Applications of the Horseshoe Crab (Limulidae) (E. Cohen, ed.), pp. 185–201, Liss, New York.Google Scholar
  394. Shishikura, F., Chiba, J., and Sekiguchi, K., 1977, Two types of hemocytes in localization of clottable protein in Japanese horseshoe crab, Tachypleus tridentatus, J. Exp. Zool. 201:303.CrossRefGoogle Scholar
  395. Shrivastava, S. C., and Richards, A. G., 1965, An autoradiographic study of the relation between hemocytes and connective tissue in the wax moth Galleria mellonella L., Biol. Bull. 128:337.CrossRefGoogle Scholar
  396. Shukla, G. S., 1964, Studies of Scolopendra morsitans (Linn). Part IV. Blood vascular system and associated structures, Agra Univ. J. Res. Sci. 13:227.Google Scholar
  397. Shuster, C. N., Jr., 1978, The circulatory system of blood of the horseshoe crab, Limulus polyphemus L.: A review, U.S. Department of Energy, Federal Energy Regulatory Commission, DOE/FERC/0014.Google Scholar
  398. Sindermann, C. J., 1970, Principal Diseases of Marine Fish and Shellfish Academic Press, New York.Google Scholar
  399. Sindermann, C. J., 1971, Internal defences of Crustacea: A review, Fishery Bull. Fish Wildl. Sew. 69:455.Google Scholar
  400. Sindermann, C. J., and Rosenfield, A., 1967, Principal diseases of commercially important marine bivalve Mollusca and Crustacea, Fishery Bull. Fish Wildl. Sew. 66:335.Google Scholar
  401. Sminia, T., van der Knaap, W. P. W., and Edelenbosch, P., 1979, The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis, Dev. Comp. Immunol. 3:37.PubMedCrossRefGoogle Scholar
  402. Smith, V. J., 1978, Cellular defence reactions of Carcinus maenas (Crustacea), Ph.D thesis, University of Wales.Google Scholar
  403. Smith, V. J., and Ratcliffe, N. A., 1978, Host defence reactions of the shore crab Carcinus maenas (L.) in vitro, J. Mar. Biol. Assoc. U.K. 58:367.CrossRefGoogle Scholar
  404. Smith, V. J., and Ratcliffe, N. A., 1980a, Cellular reactions of the shore crab Carcinus maenas: In vivo hemocytic and histopathological responses to injected bacteria, J. Invertebr. Pathol. 35:65.CrossRefGoogle Scholar
  405. Smith, V. J., and Ratcliffe, N. A., 1980b, Host defence reactions of the shore crab, Carcinus maenas (L.): Clearance and distribution of injected test particles, J. Mar. Biol. Assoc. U.K. 60:89.CrossRefGoogle Scholar
  406. Smith, V. J., and Ratcliffe, N. A., 1981, Pathological changes in the nephrocytes of the shore crab, Carcinus maenas, following injection of bacteria, J. Invertebr. Pathol, 38:113.CrossRefGoogle Scholar
  407. Söderhäll, K., and Unestam, T., 1979, Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase, Can. J. Microbiol. 25:406.PubMedCrossRefGoogle Scholar
  408. Söderhäll, K., Hall, L., Unestam, T., and Nyhlén, L., 1979, Attachment of phenoloxidase to fungal cell walls in arthropod immunity, J. Invertebr. Pathol. 34:285.CrossRefGoogle Scholar
  409. Solangi, M. A., and Lightner, D. V., 1976, Cellular inflammatory response of Penaeus aztecus and P. setiferus to the pathogenic fungus Fusarium sp. isolated from the Californian brown shrimp P. californiensis, J. Invertebr. Pathol. 27:77.CrossRefGoogle Scholar
  410. Solum, N. O., 1970a, Coagulation in Limulus—some properties of the clottable protein of Limulus polyphemus blood cells, in: The Haemostatic Mechanism in Man and Other Animals (R. G. Macfarlane, ed.), Symp. Tool. Soc. London 27:207.Google Scholar
  411. Solum, N. O., 1970b, Some characteristics of the clottable protein of Limulus polyphemus blood cells, Thromb. Diath. Haemorrh. 23:170.PubMedGoogle Scholar
  412. Solum, N. O., 1973, The coagulogen of Limulus polyphemus hemocytes: A comparison of the clotted and non-clotted forms of the molecule, Thromb. Res. 2:55.CrossRefGoogle Scholar
  413. Sparks, A. K., and Fontaine, C. T., 1973, Host response in the white shrimp Penaeus setiferus to infection by the larval trypanorhynchid cestode Prochristianella penaei, J. Invertebr. Pathol. 22:213.PubMedCrossRefGoogle Scholar
  414. Splittstoesser, C. M., Kawanishi, C. Y., and Tashiro, H., 1978, Infection of the European chafer, Amphimallon majalis, by Bacillus popillae. I. Light and electron microscope observations, J. Invertebr. Pathol. 31:84.CrossRefGoogle Scholar
  415. Sprague, V., 1965, Nosema sp. (Microsporidia: Nosematidae) in the musculature of the crab, Callinectes sapidus, J. Protozool. 12:66.Google Scholar
  416. Sprague, V., 1970, Some protozoan parasites and hyper-parasites in marine decapod Crustacea, in: Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 416–430, American Fisheries Society, Washington, D.C.Google Scholar
  417. Stagner, J. I., and Redmond, J. R., 1975, The immunological mechanisms of the horseshoe crab, Limulus polyphemus, Mar. Fish. Rev. 37:11.Google Scholar
  418. Stähelin, H., Suter, E., and Karnovsky, M. L., 1956, Studies on the interaction between phagocytes and tubercle bacilli. I. Observations on the metabolism of guinea pig leucocytes and the influence of phagocytosis, J. Exp. Med. 104:121.PubMedCrossRefGoogle Scholar
  419. Stähelin, H., Karnovsky, M. L., Farnham, A. E., and Suter, E., 1957, Studies on the interaction between phagocytes and tubercle bacilli. III. Some metabolic effects in guinea pigs associated with infection with tubercle bacilli, J. Exp. Med. 105:265.PubMedCrossRefGoogle Scholar
  420. Stang-Voss, C., 1971, Zur ultrastructur der blutzellen wir-belloser Tiere. V. Über die hämocyten von Astacus astacus (L.) (Crustacea), Z. Zellforsch. Mikrosk. Anat. 122:68.CrossRefGoogle Scholar
  421. Sternshein, D. J., and Burton, P. B., 1980, Light and electron microscopic studies of crayfish hemocytes, J. Morphol. 165:67.CrossRefGoogle Scholar
  422. Stewart, J. E., 1975, Gaffkemia, the fatal infection of lobsters (genus Homarus) caused by Aerococcus viridans (var) homari: A review, Mar. Fish Rev. 37:20.Google Scholar
  423. Stewart, J. E., and Arie, B., 1974, Effectiveness of vancomycin against gaffkemia, the bacterial disease of lobsters (genus Homarus), J. Fish. Res. Board Can. 31:1873.CrossRefGoogle Scholar
  424. Stewart, J. E., and Rabin, H., 1970, Gaffkemia, a bacterial disease of lobsters, in: Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 405–408, American Fisheries Society, Washington, D.C.Google Scholar
  425. Stewart, J. E., and Zwicker, B. M., 1974a, Comparison of various vaccines for inducing resistance in the lobster Homarus americanus to the bacterial infection gaffkemia, J. Fish. Res. Board Can. 31:1887.CrossRefGoogle Scholar
  426. Stewart, J. E., and Zwicker, B. M., 1974b, Induction of internal defence mechanisms in the lobster Homarus americanus, in: Contemporary Topics in Immunology, Volume 4, Invertebrate Immunology (E. L. Cooper, ed.), pp. 233–239, Plenum Press, New York.CrossRefGoogle Scholar
  427. Stewart, J. E., Cornick, J. W., and Dingle, J. R., 1967, An electronic method for counting lobster (Homarus americanus) Milne-Edwards hemocytes and the influence of diet on hemocyte numbers and hemolymph proteins, Can. J. Zool. 45:291.CrossRefGoogle Scholar
  428. Strangways-Dixon, J., and Smith, D. S., 1970, The fine structure of gill podocytes in Panulirus argus (Crustacea), Tissue Cell 2:611.PubMedCrossRefGoogle Scholar
  429. Stuart, A. E., 1968, The reticuloendothelial apparatus of the lesser octopus (Eledone cirrosa), J. Pathol. Bacteriol. 96:401.PubMedCrossRefGoogle Scholar
  430. Sundara-Rajulu, G., 1970, A study of haemocytes of a centipede Ethmostigmus spinosus (Chilopoda: Myriapoda), Curr. Sci. 20:324.Google Scholar
  431. Sundara-Rajulu, G., 1971a, A study of haemocytes of millipede Cingalobulus bugnioni Carl. (Diplopoda: Myriapoda), Indian J. Zool. 2:73.Google Scholar
  432. Sundara-Rajulu, G., 1971b, A study of haemocytes in a centipede Scolopendra morsitans (Chilopoda: Myriapoda), Cytologia 36:515.CrossRefGoogle Scholar
  433. Sundara-Rajulu, G., Krishnan, N., and Singh, M., 1970, The haemocytes of Eoperipatus weldoni (Onychophora: Arthropoda), Zool. Anz. 184:220.Google Scholar
  434. Tai, J. Y., and Liu, T.-Y., 1977, Studies on Limulus amoebocyte lysate. Isolation of pro-clotting enzyme, J. Biol. Chem. 252:2178.PubMedGoogle Scholar
  435. Tai, J. Y., Seid, R. C., Jr., Huhn, R. D., and Liu, T.-Y., 1977, Studies on Limulus amoebocyte lysate. II. Purification of the coagulogen and the mechanism of clotting, J. Biol. Chem. 252:4773.PubMedGoogle Scholar
  436. Tait, J., 1910, Crustacean blood coagulation as studied in the Arthropoda, Q. J. Exp. Physiol. 3:1.Google Scholar
  437. Tait, J., 1911, Types of crustacean blood coagulation, J. Mar. Biol. Assoc. U.K. 9:191.CrossRefGoogle Scholar
  438. Tait, J., and Gunn, J. D., 1918, The blood of Astacus fluviatilis: Study in crustacean blood with special reference to coagulation and phagocytosis, Q. J. Exp. Physiol. Cogn. Med. Sci. 12:35.Google Scholar
  439. Taylor, R. L., 1969, A suggested role for the polyphenol-phenoloxidase system in invertebrate immunity, J. Invertebr. Pathol. 14:427.PubMedCrossRefGoogle Scholar
  440. Teakle, R. E., 1973, Records of virus diseases in insects in Queensland, Queensl. J. Agric. Anim. Sci. 30:191.Google Scholar
  441. Thomas, I. G., and Ratcliffe, N. A., 1981, Studies on recognition of foreignness in insects utilizing integumental transplants, in: Developmental and Comparative Immunology, Vol. I (J. B. Solomon, ed.), pp. 105–110, Pergamon Press, Elmsford, N.Y.Google Scholar
  442. Thomas, I. G., and Ratcliffe, N. A., 1982, Integumental grafting and immunorecognition in insects. Dev. Comp. Immunol. 6: (in press).Google Scholar
  443. Toney, M. E., 1958, Morphology of the blood cells of some Crustacea, Growth 22:35.PubMedGoogle Scholar
  444. Tripp, M. R., 1966, Hemagglutinin in the blood of the oyster (Crassostrea virginica), J. Invertebr. Pathol. 8:478.PubMedCrossRefGoogle Scholar
  445. Tripp, M. R., and Kent, V. E., 1967, Studies on oyster cellular immunity In Vitro 3:129.CrossRefGoogle Scholar
  446. Tuzet, O., and Manier, J. F., 1954, Les Organes hématopoiétiques et le sang des Myriapodes Diplopodes (Etude par le microscope à contraste de phase), Bull. Biol. Fr. Belg. 88:90.Google Scholar
  447. Tuzet, O., and Manier, J. F., 1955, Sporazoaires et ciliés parasite de myriapodes diplopodes récoltes dans la foret de la Mandraka (Madagascar), Mem. Inst. Sci. Madagascar Ser. A 9:15.Google Scholar
  448. Tuzet, O., and Manier, J. F., 1958, Recherches sur Peripatopsis moseleyi Wood-Mason. Peripate du Natal I. Etude sur le sang IL La Spermatogenese, Bull. Biol. Fr. Belg. 91:7.Google Scholar
  449. Tyson, C. J., and Jenkin, C. R., 1973, The importance of opsonic factors in the removal of bacteria from the circulation of the crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 51:609.PubMedCrossRefGoogle Scholar
  450. Tyson, C. J., and Jenkin, C. R., 1974, Phagocytosis of bacteria in vitro by haemocytes from the crayfish (Parachaeraps bicarinatus), Aust. J. Exp. Biol. Med. Sci. 32:341.Google Scholar
  451. Tyson, G. E., 1975, Phagocytosis and digestion of spirochaetes by amoebocytes of infected brine shrimp, J. Invertebr. Pathol. 26:105.PubMedCrossRefGoogle Scholar
  452. Unestam, T., 1975, Defence reactions in and susceptibility of Australian and New Guinean freshwater crayfish to European crayfish plague fungus, Aust. J. Exp. Biol. Med. Sci. 53:349.CrossRefGoogle Scholar
  453. Unestam, T., and Nyhlén, L., 1974, Cellular and noncellular recognition of and reactions to fungi in crayfish, in: Contemporary Topics in Immunobiology, Volume IV, Invertebrate Immunology (E. L. Cooper, ed.), pp. 189–206, Plenum Press, New York.CrossRefGoogle Scholar
  454. Unestam, T., and Nylund, J. E., 1972, Blood reactions in vitro in crayfish against a fungal parasite Aphanomyces astaci, J. Invertebr. Pathol. 19:94.CrossRefGoogle Scholar
  455. Unestam, T., and Söderhäll, K., 1977, Soluble fragments from fungal cell walls elicit defence reactions in crayfish, Nature (London) 267:45.CrossRefGoogle Scholar
  456. Unestam, T., and Weiss, D. W., 1970, Host-parasite relationship between crayfish and crayfish disease fungus Aphanomyces astaci: Responses to infection by susceptible and resistant species, J. Gen. Microbiol. 60:77.PubMedCrossRefGoogle Scholar
  457. Vago, C., and Vey, A., 1970, Mycoses d’invertebres, Service du film Recherche Scientifique, Paris.Google Scholar
  458. Valeri, O. M., 1934, Osservazioni sulla morfologia degli elementi del sangue di Pachyiulus communis (Savi), Memories Soc. tose. Sci. Nat. 43:1.Google Scholar
  459. Vey, A., and Fargues, J., 1977, Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineata larvae during ecdysis, J. Invertebr. Pathol. 30:207.CrossRefGoogle Scholar
  460. Vey, A., and Vago, C., 1969, Recherches sur la guérison dans les infections cryptogamiques d’insectes: Infections a Aspergillus niger V. Tiegh. chez Galleria mellonella L., Ann. Zool. Ecol. Anim. 1:121.Google Scholar
  461. Vey, A., Quiot, J. M., and Vago, C., 1968, Formation in vitro de réactions d’immunité cellulaire chez les insects, in: Proceedings, Second International Colloquium on Invertebrate Tissue Culture (C. Barigozzi, ed.), pp. 254–263, Instituto Lombardo di Scienze e Lettere, Milan.Google Scholar
  462. Vinson, S. B., 1977, Microplitis croceipes: Inhibitions of the Heliothis zea defense reaction to Cardiochiles nigriceps, Exp. Parasitol. 41:112.PubMedCrossRefGoogle Scholar
  463. Vostal, A., and Pirčová, E., 1968, Zur kenntnis der hämocyten der vielfüsser (Diplopoda), Biologia (Bratislava) 23:161.Google Scholar
  464. Vostal, Z., 1970, On typification of tracheate hemocytes, [in Czech], Biologica (Bratislava) 25:811.Google Scholar
  465. Walker, I., 1959, Die Abwehrreaktion des Wirtes Drosophila melanogaster gegen die zoophage Cynipidae Pseudeucoüa bochei Weld., Rev. Suisse Zool. 68:569.Google Scholar
  466. Walters, J. B., and Ratcliffe, N. A., 1981. A comparison of the immune response of the wax moth Galleria mellonella to pathogenic and non-pathogenic bacteria, in: Developmental and Comparative Immunology, Vol. I (J. B. Solomon, ed.), pp. 147–152, Pergamon Press, Elmsford, N.Y.Google Scholar
  467. Warner, G. F., 1977, The Biology of Crabs, Elek Science, London.Google Scholar
  468. Weir, D. M., 1973, Immunology for Undergraduates, 3rd ed., Churchill Livingstone, Edinburgh.Google Scholar
  469. Whitcomb, R. F., Shapiro, M., and Granados, R. R., 1974, Insect defence mechanisms against microorganisms and parasitoids, in: The Physiology of Insecta, Vol. 5, 2nd ed. (M. Rockstein, ed.), pp. 447–536, Academic Press, New York.CrossRefGoogle Scholar
  470. White, K. N., and Ratcliffe, N. A., 1981, Crustacean internal defence mechanisms: Clearance and distribution of injected bacteria by the shore crab Carcinus maenas (L.), in: Developmental and Comparative Immunology, Vol. I (J. B. Solomon, ed.), pp. 153–158, Pergamon Press, Elmsford, N.Y.Google Scholar
  471. Wigglesworth, V. B., 1937, Wound healing in an insect, Rhodnius prolixus (Hemiptera), J. Exp. Biol. 14:364.Google Scholar
  472. Wigglesworth, V. B., 1943, The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood sucking arthropods, Proc. Soc. London Ser. B 131:313.CrossRefGoogle Scholar
  473. Wigglesworth, V. B., 1959, Insect blood cells, Annu. Rev. Entomol. 4:1.CrossRefGoogle Scholar
  474. Wigglesworth, V. B., 1965, The Principles of Insect Physiology, 6th ed., Methuen, London.Google Scholar
  475. Wigglesworth, V. B., 1970, The pericardial cells of insects: Analogue of the reticuloendothelial system, J. Reticuloendothelial Soc. 7:208.Google Scholar
  476. Wigglesworth, V. B., 1973, Haemocytes and basement membrane formation in Rhodnius, J. Insect Physiol. 19:831.CrossRefGoogle Scholar
  477. Wigglesworth, V. B., 1979, Hemocytes and growth in insects, in: Insect Hemocytes: Development, Forms, Functions and Techniques (A. P. Gupta, ed.), pp. 303–318, Cambridge University Press, London.CrossRefGoogle Scholar
  478. Williams, A. J., and Lutz, P. L., 1975a, Blood cell types in Carcinus maenas and their physiological role, J. Mar. Biol. Assoc. U.K. 55:671.CrossRefGoogle Scholar
  479. Williams, A. J., and Lutz, P. L., 1975b, The role of the haemolymph in the carbohydrate metabolism of Carcinus maenas, J. Mar. Biol. Assoc. U.K. 55:667.CrossRefGoogle Scholar
  480. Wood, P. J., and Visentin, L. P., 1967, Histological and histochemical observations on haemolymph cells in the crayfish, Orconectes virilis, J. Morphol. 123:559.CrossRefGoogle Scholar
  481. Wood, P. J., Podlewski, J., and Shenk, T. E., 1971, Cytochemical observations of hemolymph cells during coagulation in the crayfish Orconectes virilis, J. Morphol. 134:479.CrossRefGoogle Scholar
  482. Wright, K. A., 1964, The fine structure of the nephrocytes of the gills of two marine decapods, J. Ultrastruct. Res. 10:1.PubMedCrossRefGoogle Scholar
  483. Wyatt, G. R., and Linzen, B., 1965, The metabolism of ribonucleic acid in Cecropia silkmoth pupae in diapause, during development and after injury, Biochim. Biophys. Acta 103:588.PubMedCrossRefGoogle Scholar
  484. Young, N. S., Levin, J., and Prendergast, R. A., 1972, An invertebrate coagulation system activated by endotoxin: Evidence for enzymatic mediation, J. Clin. Invest. 51:1790.PubMedCrossRefGoogle Scholar
  485. Zachary, D., and Hoffmann, J. A., 1973, The haemocytes of Calliphora erythrocephala (Meig.) (Diptera), Z. Zellforsch. Mikrosk. Anat. 141:55.PubMedCrossRefGoogle Scholar
  486. Zachary, D., Brehélin, M., and Hoffmann, J. A., 1975, Role of the “thrombocytoids” in capsule formation in the dipteran Calliphora erythrocephala, Cell Tissue Res. 162:343.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Norman A. Ratcliffe
    • 1
  • Keith N. White
    • 1
  • Andrew F. Rowley
    • 1
  • Julia B. Walters
    • 1
  1. 1.Department of ZoologyUniversity College of SwanseaWalesUK

Personalised recommendations