Advertisement

Cellular Defense Systems of the Mollusca

  • Thelma C. Fletcher
  • C. Anwyl Cooper-Willis

Abstract

By the time the oldest fossiliferous rocks were laid down, the molluscs were already represented by many different patterns (Runnegar and Pojeta, 1974). Few phyla show such wide diversity imposed on such a uniform body plan. The estimated 47,000 living molluscan species (Boss, 1971) evolved from a group related to the same stock as that from which the arthropods and annelids derive. The gastropods are the most abundant class, representing 80% of the total species, while the lamellibranchs represent 16% and the cephalopods only 1%.

Keywords

Digestive Gland Schistosoma Mansoni Crassostrea Virginica Macoma Balthica American Oyster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. S., 1977, Biochemistry and physiology of invertebrate macrophages in vitro, Comp. Pathobiol. 3:1.Google Scholar
  2. Anderson, R. S., and Good, R. A., 1976, Opsonic involvement in phagocytosis by mollusk hemocytes, J. Invertebr. Pathol. 27:57.PubMedCrossRefGoogle Scholar
  3. Anderson, R. S., Holmes, B., and Good, R. A., 1973, In vitro bactericidal capacity of Blaberus craniifer hemocytes, J. Invertebr. Pathol. 22:127.PubMedCrossRefGoogle Scholar
  4. Andrews, E. B., 1976, The fine structure of the heart of some prosobranch and pulmonate gastropods in relation to filtration, J. Moll. Stud. 42:199.Google Scholar
  5. Andrews, E. B., 1979, Fine structure in relation to function in the excretory system of two species of Viviparus, J. Moll. Stud. 45:186.Google Scholar
  6. Arimoto, R., and Tripp, M. R., 1977, Characterization of a bacterial agglutinin in the hemolymph of the hard clam, Mercenaria mercenaria, J. Invertebr. Pathol. 30:406.CrossRefGoogle Scholar
  7. Baehner, R. L., 1975, Microbe ingestion and killing by neutrophils: Normal mechanisms and abnormalities, Clin. Haematol. 4:609.PubMedGoogle Scholar
  8. Barr, A. R., 1975, Evidence for genetical control of invertebrate immunity and its field significance, in: Invertebrate Immunity (K. Maramorosch and R. E. Shope, eds.), pp. 129–135, Academic Press, New York.Google Scholar
  9. Basch, P. F., 1976, Intermediate host specificity in Schistosoma mansoni, Exp. Parasitol. 39:150.PubMedCrossRefGoogle Scholar
  10. Bayne, C. J., 1973a, Internal defense mechanisms of Octopus dofleini, Malacol. Rev. 6:13.Google Scholar
  11. Bayne, C. J., 1973b, Molluscan internal defense mechanism: The fate of C14-labelled bacteria in the land snail Helix pomatia (L.), J. Comp. Physiol. 86:17.CrossRefGoogle Scholar
  12. Bayne, C. J., 1974, On the immediate fate of bacteria in the land snail Helix, in: Invertebrate Immunology (E. L. Cooper, ed.), pp. 37–45, Plenum Press, New York.Google Scholar
  13. Bayne, C. J., 1977, Molluscan immunobiology: The elevation of responses, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 67–74, Elsevier/North-Holland, Amsterdam.Google Scholar
  14. Bayne, C. J., Moore, M. N., Carefoot, T. H., and Thompson, R. J., 1979, Hemolymph functions in Mytilus californianus: The cytochemistry of hemocytes and their responses to foreign implants and hemolymph factors in phagocytosis, J. Invertebr. Pathol. 34:1.CrossRefGoogle Scholar
  15. Bayne, C. J., Sminia, T., and van der Knaap, W. P. W., 1980, Immunological memory: Status of molluscan studies, in: Phytogeny of Immunological Memory (M. J. Manning, ed.), pp. 57–64, Elsevier/North-Holland, Amsterdam.Google Scholar
  16. Beltz, B., 1977, Transmission electron microscope study of pore cells in Limax maximus, Proceedings, 35th Annual Meeting of the Electron Microscopy Society of America, p. 656.Google Scholar
  17. Bend, J. R., James, M. O., and Dansette, P. M., 1977, In vitro metabolism of xenobiotics in some marine animals, Ann. N.Y. Acad. Sci. 298:505.CrossRefGoogle Scholar
  18. Bloom, B. R., 1979, Games parasites play: How parasites evade immune surveillance, Nature (London) 279:21.CrossRefGoogle Scholar
  19. Boer, H. H., and Sminia, T., 1976, Sieve structure of slit diaphragms of podocytes and pore cells of gastropod molluscs, Cell Tissue Res. 170:221.PubMedCrossRefGoogle Scholar
  20. Boss, K. J., 1971, Critical estimate of the number of recent Mollusca, Occas. Pap. Mollusks Mus. Comp. Zool. Haw. Univ. 3:81.Google Scholar
  21. Boyden, S. V., 1962, Cellular discrimination between indigenous and foreign matter, J. Theor. Biol. 3:123.CrossRefGoogle Scholar
  22. Brown, A. C., 1967, Elimination of foreign particles by the snail Helix aspersa, Nature (London) 213:1154.CrossRefGoogle Scholar
  23. Brown, R. S., Wolke, R. E., Saila, S. B., and Brown, C. W., 1977, Prevalence of neoplasia in 10 New England populations of the soft-shelled clam (Mya arenaria), Ann. N.Y. Acad. Sci. 298:522.CrossRefGoogle Scholar
  24. Brown, R. S., Appledoorn, R., Brown, C. W., and Saila, S. B., 1980, The value of the multidisciplinary approach to research on marine pollution effects as evidenced in a three-year study to determine the etiology and pathogenesis of neoplasia in the soft-shelled clam, Mya arenaria, Rapp. P.-V. Reun. Cons. Int. Explor. Mer 179:128.Google Scholar
  25. Buchholz, K., Kuhlmann, D., and Nolte, A., 1971, Aufnahme von Trypanblau und Ferritin in die Blasenzellen des Bindegewebes von Helix pomatia und Cepaea nemoralis (Stylommatophora, Pulmonata). Z. Zellforsch. Mikrosk. Anat. 113:203.PubMedCrossRefGoogle Scholar
  26. Capo, C., Bongrand, P., Benoliel, A.-M., and Depieds, R., 1979, Non-specific recognition in phagocytosis: Ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages, Immunology 36:501.PubMedGoogle Scholar
  27. Carter, O.S., and Bogitsh, B. J., 1975, Histologic and cytochemical observations on the effects of Schistosoma mansoni on Biomphalaria glabrata, Ann. N.Y. Acad. Sci. 266:380.PubMedCrossRefGoogle Scholar
  28. Cheney, D. P., 1971, A summary of invertebrate leukocyte morphology with emphasis on blood elements of the Manila clam, Tapes semidecussata, Biol. Bull. 140:353.CrossRefGoogle Scholar
  29. Cheng, T. C., 1968, The compatibility and incompatibility concept as related to trematodes and molluscs, Pac. Sci. 22:141.Google Scholar
  30. Cheng, T. C., 1975, Functional morphology and biochemistry of molluscan phagocytes, Ann. N.Y. Acad. Sci. 266:343.PubMedCrossRefGoogle Scholar
  31. Cheng, T. C., 1976a, Beta-glucuronidase in the serum and hemolymph cells oi Mercenaria mercenaria and Crassostrea virginica (Mollusca: Pelecypoda), J. Invertebr. Pathol. 27:125.PubMedCrossRefGoogle Scholar
  32. Cheng, T. C., 1976b, Aspects of substrate utilization and energy requirement during molluscan phagocytosis, J. Invertebr. Pathol. 27:263.PubMedCrossRefGoogle Scholar
  33. Cheng, T. C., 1977, Biochemical and ultrastructural evidence for the double role of phagocytosis in molluscs: Defense and nutrition, Comp. Pathobiol. 3:21.Google Scholar
  34. Cheng, T. C., 1978, A study of granuloma formation by molluscan cells, Comp. Pathobiol. 4:97.Google Scholar
  35. Cheng, T. C., and Butler, M. S., 1979, Experimentally induced elevations in acid phosphatase activity in hemolymph of Biomphalaria glabrata (Mollusca), J. Invertebr. Pathol. 34:119.PubMedCrossRefGoogle Scholar
  36. Cheng, T. C., and Cali, A., 1974, An electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica, in: Invertebrate Immunology (E. L. Cooper, ed.), pp. 25–35, Plenum Press, New York.Google Scholar
  37. Cheng, T. C., and Galloway, P. C., 1970, Transplantation immunity in mollusks: The histoincompatibility of Helisoma duryi normale with allografts and xenografts, J. Invertebr. Pathol. 15:177.PubMedCrossRefGoogle Scholar
  38. Cheng, T. C., and Garrabrant, T. A., 1977, Acid phosphatase in granulocytic capsules formed in strains of Biomphalaria glabrata totally and partially resistant to Schistosoma mansoni, Int. J. Parasitol. 7:467.PubMedCrossRefGoogle Scholar
  39. Cheng, T. C., and Howland, K. H., 1979, Chemotactic attraction between hemocytes of the oyster, Crassostrea virginica, and bacteria, J. Invertebr. Pathol. 33:204.CrossRefGoogle Scholar
  40. Cheng, T. C., and Lee, F. O., 1971, Glucose levels in the mollusc Biomphalaria glabrata infected with Schistosoma mansoni, J. Invertebr. Pathol. 18:395.PubMedCrossRefGoogle Scholar
  41. Cheng, T. C. and Rifkin, E., 1970, Cellular reactions in marine molluscs in response to helminth parasitism, in: A Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 443–496, American Fisheries Society, Washington, D.C.Google Scholar
  42. Cheng, T. C., and Rodrick, G. E., 1975, Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria, Comp. Biochem. Physiol. B. 52:443.PubMedGoogle Scholar
  43. Cheng, T. C., and Rudo, B. M., 1976a, Chemotactic attraction of Crassostrea virginica hemolymph cells to Staphylococcus lactus, J. Invertebr. Pathol. 27:137.PubMedCrossRefGoogle Scholar
  44. Cheng, T. C., and Rudo, B. M., 1976b, Distribution of glycogen resulting from degradation of relabelled bacteria in the American oyster, Crassostrea virginica, J. Invertebr. Pathol. 27:259.CrossRefGoogle Scholar
  45. Cheng, T. C., and Snyder, R. W., 1962, Studies on host-parasite relationships between larval trematodes and their hosts. I. A review. II. The utilisation of the host’s glycogen by the intramolluscan larvae of Glypthelmins pennsylvaniensis Cheng, and associated phenomena, Trans. Am. Microsc. Soc. 81:209.CrossRefGoogle Scholar
  46. Cheng, T. C. and Yoshino, T. P., 1976, Lipase activity in the serum and hemolymph cells of the soft-shelled clam, Mya arenaria, during phagocytosis, J. Invertebr. Pathol. 27:243.PubMedCrossRefGoogle Scholar
  47. Cheng, T. C., Shuster, C. N., and Anderson, A. H., 1966, Effects of plasma and tissue extracts of marine pelecypods on the cercaria of Himasthla quissetensis, Exp. Parasitol. 19:9.PubMedCrossRefGoogle Scholar
  48. Cheng, T. C., Thakur, A. S., and Rifkin, E., 1969, Phagocytosis as an internal defense mechanism in the mollusca: With an experimental study of the role of leucocytes in the removal of ink particles in Littorina scabra Linn., Proc. Symp. Mollusca 11:546.Google Scholar
  49. Cheng, T. C., Cali, A., and Foley, D. A., 1974, Cellular reactions in marine pelecypods as a factor influencing endosymbiosis, in: Symbiosis in the Sea (W. A. Vernberg, ed.), pp. 61–91, University of South Carolina Press, Columbia.Google Scholar
  50. Cheng, T. C., Rodrick, G. E., Foley, D. A., and Koehler, S. A., 1975, Release of lysozyme from hemolymph cells of Mercenaria mercenaria during phagocytosis, J. Invertebr. Pathol. 25:261.PubMedCrossRefGoogle Scholar
  51. Cheng, T. C., Chorney, M. J., and Yoshino, T. P., 1977, Lysozyme-like activity in the hemolymph of Biomphalaria glabrata challenged with bacteria, J. Invertebr. Pathol. 29:170.PubMedCrossRefGoogle Scholar
  52. Cheng, T. C., Butler, M. S., Guida, V. G., and Gerhart, P. L., 1979, A scanning electron microscope study of the pseudopodia of Biomphalaria glabrata granulocytes, J. Invertebr. Pathol. 33:118.CrossRefGoogle Scholar
  53. Chothia, C., and Janin, J., 1975, Principles of protein-protein recognition, Nature (London) 256:705.CrossRefGoogle Scholar
  54. Christensen, D. J., Farley, C.., and Kern, F. G., 1974, Epizootic neoplasms in the clam Macoma althica (L.) from Chesapeake Bay, J. Natl. Cancer Inst. 52:1739.PubMedGoogle Scholar
  55. Christie, J., Foster, W. B., and Stauber, L. A., 1974, The effect of parasitism and starvation on arbohydrate reserves of Biomphalaria glabrata, J. Invertebr. Pathol. 23:55.PubMedCrossRefGoogle Scholar
  56. Cooper, E. L., 1976, Cellular recognition of allografts and xenografts in invertebrates, in: Comparative mmunology (J. J. Marchalonis, ed.), pp. 36–79, Blackwell, Oxford.Google Scholar
  57. Cooper-Willis, C. A., 1979, Changes in the acid phosphatase levels in the haemocytes and aemolymph of Patella vulgata after challenge with bacteria, Comp. Biochem. Physiol. A 63:627.CrossRefGoogle Scholar
  58. Cowden, R. R., and Curtis, S. K., 1973, Observations on living cells dissociated from the leukopoietic organ of Octopus briareus, Exp. Mol. Pathol. 19:178.PubMedCrossRefGoogle Scholar
  59. Cowden, R. R., and Curtis, S. K., 1974, The octopus white body: An ultrastructural survey, in: Invertebrate Immunology (E. L. Cooper, ed.), pp. 77–90, Plenum Press, New York.Google Scholar
  60. Crichton, R., and Lafferty, K. J., 1975, The discriminatory capacity of phagocytic cells in the chiton (Liolophura gaimardi), Adv. Exp. Med. Biol. 64:89.PubMedGoogle Scholar
  61. Curtis, S. K., and Cowden, R. R., 1978, Responsiveness of the slug (Umax maximus) to injections of fluorescein- and rhodamine-conjugated immunogens, Dev. Comp. Immunol. 2:727.PubMedCrossRefGoogle Scholar
  62. Curtis, S. K., and Cowden, R. R., 1979, Histochemical and ultrastructural features of the aorta of the slug (Umax maximus), J. Morphol. 161:1.CrossRefGoogle Scholar
  63. Cushing, J. E., 1962, Blood groups in marine animals and immune mechanisms of lower vertebrates and invertebrates (comparative immunology), Proceedings, Conference on Immunoreproduction, La Jolla, California, pp. 205–207, The Population Council, New York.Google Scholar
  64. Davies, P. S., and Partridge, T., 1972, Limpet haemocytes. I. Studies on aggregation and spike formation, J. Cell Sci. 11:757.PubMedGoogle Scholar
  65. DesVoigne, D. M., and Sparks, A. K., 1969, The reaction of the Pacific oyster, Crassostrea gigas, to homologous tissue implants, J. Invertebr. Pathol. 14:293.PubMedCrossRefGoogle Scholar
  66. Douglass, W. R., and Haskin, H. H., 1976, Oyster-MSX interactions: Alterations in hemolymph enzyme activities in Crassostrea virginica during the course of Minchinia nelsoni disease development, J. Invertebr. Pathol. 27:317.PubMedCrossRefGoogle Scholar
  67. Eble, A. F., 1966, Some observations on the seasonal distribution of selected enzymes in the American oyster as revealed by enzyme histochemistry, Proc. Natl. Shellfish. Assoc. 56:37.Google Scholar
  68. Eble, A. F., and Tripp, M. R., 1968, Enzyme histochemistry of phagosomes in oyster leucocytes, Bull. N.J. Acad. Sci. B 13:93.Google Scholar
  69. Elston, R., 1979, Viruslike particles associated with lesions in larval Pacific oysters (Crassostrea gigas), J. Invertebr. Pathol. 33:71.CrossRefGoogle Scholar
  70. Fankboner, P. V., 1971, Intracellular digestion of symbiotic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis, Biol. Bull. 141:222.CrossRefGoogle Scholar
  71. Farley, C. A., 1968, Minchinia nelsoni (Haplosporida) disease syndrome in the American oyster Crassostrea virginica, J. Protozool. 15:585.PubMedGoogle Scholar
  72. Farley, C. A., 1969, Probable neoplastic disease of the hematopoietic system in oysters, Crassostrea virginica and Crassostrea gigas, Natl. Cancer Inst. Monogr. 31:541.Google Scholar
  73. Farley, C. A., 1976, Ultrastructural observations on epizootic neoplasia and lytic virus infection in bivalve molluscs, Prog. Exp. Tumor Res. 20:283.PubMedGoogle Scholar
  74. Farley, C. A., 1977, Neoplasms in estuarine mollusks and approaches to ascertain causes, Ann. N.Y. Acad. Sci. 298:225.CrossRefGoogle Scholar
  75. Farley, C. A., 1978, Viruses and virus-like particles in marine molluscs, Mar. Fish. Rev. 40:18.Google Scholar
  76. Farley, C. A., and Sparks, A. K., 1970, Proliferative diseases of hemocytes, endothelial cells and connective tissue cells in molluscs, Bibl. Haematol. (Basel) 36:610.Google Scholar
  77. Feng, S. Y., 1965, Pinocytosis of proteins by oyster leucocytes, Biol. Bull. 129:95.CrossRefGoogle Scholar
  78. Feng, S. Y., 1966, Experimental bacterial infections in the oyster, Crassostrea virginica, J. Invertebr. Pathol. 8:505.CrossRefGoogle Scholar
  79. Feng, S. Y., and Feng, J. S., 1974, The effect of temperature on cellular reactions of Crassostrea virginica to the injection of avian erythrocytes, J. Invertebr. Pathol. 23:22.PubMedCrossRefGoogle Scholar
  80. Feng, S. Y., Feng, J. S., Burke, C. N., and Khairallah, L. H., 1971, Light and electron microscopy of the leucocytes of Crassostrea virginica (Mollusca, Pelecypoda), Z. Zellforsch. Mikrosk, Anat. 120:222.CrossRefGoogle Scholar
  81. Feng, S. Y., Feng, J. S., and Yamasu, T., 1977, Roles of Mytilus coruscus and Crassostrea gigas blood cells in defense and nutrition, Comp. Pathobiol. 3:31.Google Scholar
  82. Fletcher, T. C., 1978, Defence mechanisms in fish, Biochem. Biophys. Perspect. Mar. Biol. 4:189.Google Scholar
  83. Foster, C. A., and Howse, H. D., 1978, A morphological study on the gills of the brown shrimp, Penaeus aztecus, Tissue Cell 10:77.CrossRefGoogle Scholar
  84. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature (London) 279:679.CrossRefGoogle Scholar
  85. Hardy, S. W., Fletcher, T. C., and Olafsen, J. A., 1977, Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 59–66, Elsevier/North-Holland, Amsterdam.Google Scholar
  86. Harris, K. R., 1975, The fine structure of encapsulation in Biomphalaria glabrata, Ann. N.Y. Acad. Sci. 66:446.CrossRefGoogle Scholar
  87. Harris, K. R., and Cheng, T. C., 1975a, The encapsulation process in Biomphalaria glabrata experimentally infected with the metastrongylid Angiostrongylus cantonensis: Light microscopy, Int. J. Parasitol. 5:521.PubMedCrossRefGoogle Scholar
  88. Harris, K. R., and Cheng, T. C., 1975b, The encapsulation process in Biomphalaria glabrata experimentally infected with the metastrongylid Angiostrongylus cantonensis: Enzyme histochemistry, J. Invertebr. Pathol. 26:367.PubMedCrossRefGoogle Scholar
  89. Hartland, B. J., and Timoney, J. F., 1979, In vivo clearance of enteric bacteria from the hemolymph of the hard clam and the American oyster, Appl. Environ. Microbiol. 37:517.PubMedGoogle Scholar
  90. Heyneman, D., Faulk, W. P., and Fudenberg, H. H., 1971, Echinostoma lindoense: Larval antigens from the snail intermediate host, Biomphalaria glabrata, Exp. Parasitol. 29:480.CrossRefGoogle Scholar
  91. Hildemann, W. H., Bigger, C. H., and Johnston, I. S., 1979, Histoincompatibility reactions and allogeneic polymorphism among invertebrates, Transplant. Proc. 11:1136.PubMedGoogle Scholar
  92. Hopkins, S. H., 1957, Our present knowledge of the oyster parasite Bucephalus, Proc. Natl. Shellfish. Assoc. 47:58.Google Scholar
  93. Janoff, A., and Hawrylko, E., 1964, Lysosomal enzymes in invertebrate leucocytes, J. Cell. Comp. Physiol. 63:267.CrossRefGoogle Scholar
  94. Johnson, P. T., 1980, Histology of the Blue Crab, Callinectes sapidus (Decapoda: Portunidae): A Model for the Decapoda, Praeger, New York.Google Scholar
  95. Kassim, O. O., and Richards, C. S., 1978, Schistosoma mansoni: Lysozyme activity in Biomphalaria glabrata during infection with two strains, Exp. Parasitol. 46:213.PubMedCrossRefGoogle Scholar
  96. Kinoti, G. K., 1971, Observations on the infection of bulinid snails with Schistosoma mattheei: The mechanism of resistance to infection, Parasitology 62:161.PubMedCrossRefGoogle Scholar
  97. Klein, J., 1977, Evolution and function of the major histocompatibility system: Facts and speculation, in: The Major Histocompatibility System in Man and Animals (D. Götze, ed.), pp. 339–378, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  98. Krupa, P. L., Lewis, L. M., and Del Vecchio, P., 1977, Schistosoma haematobium in Bulinus guernei: Electron microscopy of hemocyte-sporocyst interactions, J. Invertebr. Pathol. 30:35.PubMedCrossRefGoogle Scholar
  99. Lackie, A. M., 1977, Cellular recognition of ’not-self in insects, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 75–81, Elsevier/North-Holland, Amsterdam.Google Scholar
  100. Lafferty, K. J., and Crichton, R., 1973, Immune response of invertebrates, in: Viruses and Invertebrates (A. J. Gibbs, ed.), pp. 300–320, North-Holland, Amsterdam.Google Scholar
  101. Lie, K. J., and Heyneman, D., 1975, Studies on resistance in snails: A specific tissue reaction to Echinostoma lindoense in Biomphalaria glabrata snails, Int. J. Parasitol. 5:621.PubMedCrossRefGoogle Scholar
  102. Lie, K. J., and Heyneman, D., 1976a, Studies on resistance in snails. 3. Tissue reactions to Echinostoma lindoense sporocysts in sensitized and resensitized Biomphalaria glabrata, J. Parasitol. 62:51.PubMedCrossRefGoogle Scholar
  103. Lie, K. J., and Heyneman, D., 1976b, Studies on resistance in snails. 6. Escape of Echinostoma lindoense sporocysts from encapsulation in the snail heart and subsequent loss of the host’s ability to resist infection by the same parasite, J. Parasitol. 62:298.PubMedCrossRefGoogle Scholar
  104. Lie, K. J., and Heyneman, D., 1979, Acquired resistance to echinostomes in four Biomphalaria glabrata strains, Int. J. Parasitol. 9:533.PubMedCrossRefGoogle Scholar
  105. Lie, K. J., Heyneman, D., and Jeong, K. H., 1976a, Studies on resistance in snails. 4. Induction of ventricular capsules and changes in the amebocyte-producing organ during sensitization of Biomphalaria glabrata snails, J. Parasitol. 62:286.PubMedCrossRefGoogle Scholar
  106. Lie, K. J., Heyneman, D., and Jeong, K. H., 1976b, Studies on resistance in snails. 7. Evidence of interference with the defense reaction in Biomphalaria glabrata by trematode larvae, J. Parasitol. 62:608.PubMedCrossRefGoogle Scholar
  107. Loker, E. S., 1978, Schistosomatiutn douthitti: Effects of Lymnaea catascopiwn age on susceptibility to infection, Exp. Parasitol. 45:65.PubMedCrossRefGoogle Scholar
  108. Loker, E. S., 1979a, Pathology and host responses induced by Schistosomatiutn douthitti in the fresh water snail, Lymnaea catascopium, J. Invertebr. Pathol. 33:265.PubMedCrossRefGoogle Scholar
  109. Loker, E. S., 1979b, Effects of Schistosomatium douthitti infection on the growth, survival and reproduction of Lymnaea catascopium, J. Invertebr. Pathol. 34:138.PubMedCrossRefGoogle Scholar
  110. Lowe, D. M., and Moore, M. N., 1978, Cytology and quantitative cytochemistry of a proliferative atypical hemocytic condition in Mytilus edulis (Bivalvia, Mollusca), J. Natl. Cancer Inst. 60:1455.PubMedGoogle Scholar
  111. Mackie, A. M., Singh, H. T., and Owen, J. M., 1977, Studies on the distribution, biosynthesis and unction of steroidal saponins in echinoderms, Comp. Biochem. Physiol B 56:9.PubMedGoogle Scholar
  112. Mackin, J. G., 1951, Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinum (Mackin, Owen, and Collier), Bull. Mar. Sci. Gulf Caribbean 1:72.Google Scholar
  113. Mäkelä, O., Koskimies, S., and Karjalainen, K., 1976, Possible evolution of acquired immunity from self-recognition structures, Scand. J. Immunol. 5:305.PubMedCrossRefGoogle Scholar
  114. Malek, E. A., and Cheng, T. C., 1974, Medical and Economic Malacology, Academic Press, New York.Google Scholar
  115. Marchalonis, J. J., and Cohen, N. (eds.), 1980, Self/Non-self Discrimination, Plenum Press, New York.Google Scholar
  116. McLean, N., 1980, Phagocytosis by epidermal cells of the mantle in Mytilus edulis L. (Mollusca: Bivalvia), Comp. Biochem. Physiol. A 66:367.CrossRefGoogle Scholar
  117. McRipley, R. J., and Sbarra, A. J., 1967, Role of the phagocyte in host-parasite interactions. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in the phagocyte, J. Bacteriol. 94:1425.PubMedGoogle Scholar
  118. Michelson, E. H., 1961, An acid-fast pathogen of freshwater snails, Am. J. Trop. Med. Hyg. 10:423.PubMedGoogle Scholar
  119. Michelson, E. H., 1972, A neoplasm in the giant African snail, Achatina fulica, J. Invertebr. Pathol. 20:264.CrossRefGoogle Scholar
  120. Michelson, E. H., 1975, Cellular defense mechanisms and tissue alterations in gastropod molluscs, in: Invertebrate Immunity (K. Maramorosch and R. E. Shope, eds.), pp. 181–195, Academic Press, New York.Google Scholar
  121. Michelson, E. H., and DuBois, L., 1978, Susceptibility of Bahian populations of Biomphalaria glabrata to an allopatric strain of Schistosoma mansoni, Am. J. Trop. Med. Hyg. 27:782.PubMedGoogle Scholar
  122. Michelson, E. H., and Richards, C.S., 1975, Neoplasms and tumor-like growths in the aquatic pulmonate snail Biomphalaria glabrata, Ann. N.Y. Acad. Sci. 266:411.PubMedCrossRefGoogle Scholar
  123. Mix, M. C., 1975, Proliferative characteristics of atypical cells in native oysters (Ostrea lurida) from Yaquina Bay, Oregon, J. Invertebr. Pathol. 26:289.PubMedCrossRefGoogle Scholar
  124. Mix, M. C., Hawkes, J. W., and Sparks, A. K., 1979, Observations on the ultrastructure of large cells associated with putative neoplastic disorders of mussels, Mytilus edulis, from Yaquina Bay, Oregon, J. Invertebr. Pathol. 34:41CrossRefGoogle Scholar
  125. Moore, C. A., and Eble, A. F., 1977, Cytochemical aspects of Mercenaria mercenaria hemocytes, Biol. Bull. 152:105.PubMedCrossRefGoogle Scholar
  126. Moore, M. N., and Lowe, D. M., 1977, The cytology and cytochemistry of the hemocytes of Mytilus edulis and their responses to experimentally injected carbon particles, J. Invertebr. Pathol. 29:18.PubMedCrossRefGoogle Scholar
  127. Morton, J. E., 1967, Molluscs, pp. 171–225, Hutchinson University Library.Google Scholar
  128. Murrell, K. D., Taylor, D. W., Vannier, W. E., and Dean, D. A., 1978, Schistosoma mansoni: Analysis of surface membrane carbohydrates using lectins, Exp. Parasitol. 46:247.PubMedCrossRefGoogle Scholar
  129. Narain, A. S., 1973, The amoebocytes of lamellibranch molluscs, with special reference to the circulating amoebocytes, Malacol. Rev. 6:1.Google Scholar
  130. Newton, W. L., 1953, The inheritance of susceptibility to infection with Schistosoma mansoni in Australorbis glabratus, Exp. Parasitol. 2:242.CrossRefGoogle Scholar
  131. Pan, C.-T., 1965, Studies on the host-parasite relationship between Schistosoma mansoni and the snail Australorbis glabratus, Am. J. Trop. Med. Hyg. 14:931.PubMedGoogle Scholar
  132. Parish, C. R., 1977, Simple model for self-non-self-discrimination in invertebrates, Nature (London) 267:711.CrossRefGoogle Scholar
  133. Pauley, G. B., 1969, A critical review of neoplasms and tumor-like lesions in molluscs, Natl. Cancer Inst. Monogr. 31:509.PubMedGoogle Scholar
  134. Pauley, G. B., and Krassner, S. M., 1972, Cellular defence reactions to particulate materials in the California sea hare, Aplysia californica, J. Invertebr. Pathol 19:18.CrossRefGoogle Scholar
  135. Pauley, G. B., Krassner, S. M., and Chapman, F. A., 1971, Bacterial clearance in the California sea hare, Aplysia californica, J. Invertebr. Pathol. 18:227.PubMedCrossRefGoogle Scholar
  136. Potts, W. T. W., 1967, Excretion in the molluscs, Biol. Rev. 42:1.CrossRefGoogle Scholar
  137. Prytherch, H. F., 1940, The life cycle and morphology of Nematopsis ostrearum sp. nov., a gregarine parasite of the mud crab and oyster, J. Morphol. 66:39.CrossRefGoogle Scholar
  138. Rabinovitch, M., and De Stefano, M. J., 1970, Interactions of red cells with phagocytes of the wax-moth (Galleria mellonella L.) and mouse, Exp. Cell Res. 59:272.PubMedCrossRefGoogle Scholar
  139. Rachford, F. W., 1976, Host-parasite relationship of Angiostrongylus cantonensis in Lymnaea palustris. II. Histopathology, Exp. Parasitol. 39:382.PubMedCrossRefGoogle Scholar
  140. Ratcliffe, N. A., and Rowley, A. F., 1979, A comparative synopsis of the structure and function of the blood cells of insects and other invertebrates, Dev. Comp. Immunol. 3:189.PubMedCrossRefGoogle Scholar
  141. Read, C. P., 1958, Status of behavioral and physiological “resistance,” Rice Inst. Pam. 45:36.Google Scholar
  142. Reade, P. C., 1968, Phagocytosis in invertebrates, Aust. J. Exp. Biol. Med. Sci. 46:219.PubMedCrossRefGoogle Scholar
  143. Reade, P., and Reade, E., 1972, Phagocytosis in invertebrates. II. The clearance of carbon particles by the clam, Tridacna maxima, J. Reticuloendothelial Soc. 12:349.Google Scholar
  144. Renwrantz, L. R., and Cheng, T. C., 1977a, Identification of agglutinin receptors on hemocytes of Helix pomatia, J. Invertebr. Pathol. 29:88.PubMedCrossRefGoogle Scholar
  145. Renwrantz, L. R., and Cheng, T. C., 1977b, Agglutinin-mediated attachment of erythrocytes to hemocytes of Helix pomatia, J. Invertebr. Pathol. 29:97.PubMedCrossRefGoogle Scholar
  146. Renwrantz, L., Yoshino, T., Cheng, T., and Auld, K., 1979, Size determination of hemocytes from the American oyster, Crassostrea virginica, and the description of a phagocytosis mechanism, Tool. Jahrb. Abt. Allg. Zool. Physiol. Tiere 83:1.Google Scholar
  147. Richards, C. S., 1970, Pearl formation in Biomphalaria glabrata, J. Invertebr. Pathol. 15:459.CrossRefGoogle Scholar
  148. Richards, C. S., 1972, Biomphalaria glabrata genetics: Pearl formation, J. Invertebr. Pathol. 20:37.PubMedCrossRefGoogle Scholar
  149. Richards, C. S., 1975, Genetic factors in susceptibility of Biomphalaria glabrata for different strains of Schistosoma mansoni, Parasitology 70:231.PubMedCrossRefGoogle Scholar
  150. Richards, C. S., and Merritt, J. W., 1967, Studies on Angiostrongylus cantonensis in molluscan intermediate hosts, J. Parasitol. 53:382.PubMedCrossRefGoogle Scholar
  151. Rodewald, R., and Karnovsky, M. J., 1974, Porous substructure of the glomerular slit diaphragm in the rat and mouse, J. Cell Sci. 60:423.CrossRefGoogle Scholar
  152. Ruddell, C. L., and Wellings, S. R., 1971, The ultrastructure of the oyster brown cell, a cell with a fenestrated plasma membrane, Z. Zellforsch. Mikrosk. Anat. 120:17.PubMedCrossRefGoogle Scholar
  153. Runnegar, B., and Pojeta, J., 1974, Molluscan phylogeny: The paleontological viewpoint, Science 186:311.PubMedCrossRefGoogle Scholar
  154. Salt, G., 1970, Experimental studies in insect parasitism. XV, Proc. R. Soc. London Ser. B 176:105.CrossRefGoogle Scholar
  155. Schmid, L. S., 1975, Chemotaxis of hemocytes from the snail Viviparus malleatus, J. Invertebr. Pathol. 25:125.CrossRefGoogle Scholar
  156. Silverstein, S. C., Michl, J., and Sung, S. S. J., 1978, Phagocytosis, in: Transport of Macromolecules in Cellular Systems (S. C. Silverstein, ed.), pp. 245–264, Dahlem Konferenzen, Berlin.Google Scholar
  157. Sindermann, C. J., 1970, Principal Diseases of Marine Fish and Shellfish, Academic Press, New York.Google Scholar
  158. Sminia, T., 1972, Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry, Z. Zeilforsch. Mikrosk, Anat. 130:497.CrossRefGoogle Scholar
  159. Sminia, T., 1974, Haematopoiesis in the fresh water snail Lymnaea stagnalis studied by electron microscopy and autoradiography, Cell Tissue Res. 150:443.PubMedCrossRefGoogle Scholar
  160. Sminia, T., Pietersma, K., and Scheerboom, J. E. M., 1973, Histological and ultrastructural observations on wourid healing in the fresh water pulmonate Lymnaea stagnalis, Z. Zellforsch. Mikrosk. Anat. 141:561.CrossRefGoogle Scholar
  161. Sminia, T., Borghart-Reinders, E., and van de Linde, A. W., 1974, Encapsulation of foreign materials experimentally introduced into the fresh water snail Lymnaea stagnalis, Cell Tissue Res. 153:307.Google Scholar
  162. Sminia, T., van der Knaap, W. P. W., and Kroese, F. G. M., 1979a, Fixed phagocytes in the fresh water snail Lymnaea stagnalis, Cell Tissue Res. 196:545.PubMedCrossRefGoogle Scholar
  163. Sminia, T., van der Knaap, W. P. W., and Edelenbosch, P., 1979b, The role of serum factors in phagocytosis of foreign particles by blood cells of the fresh water snail Lymnaea stagnalis, Dev. Comp. Immunol. 3:37.PubMedCrossRefGoogle Scholar
  164. Sprague, V., 1965, Observations on Chytridiopsis mytilovum (Microsporidia), J. Protozool. 12:385.Google Scholar
  165. Sprague, V., 1971, Diseases of oysters, Annu. Rev. Microbiol. 25:211.CrossRefGoogle Scholar
  166. Sprent, J. F. A., 1969, Evolutionary aspects of immunity in zooparasitic infections, in: Immunity to Parasitic Animals, Vol. 1 (G. J. Jackson, R. Herman, and I. Singer, eds.), pp. 3–62, North-Holland, Amsterdam.Google Scholar
  167. Stanislawski, E., Renwrantz, L., and Becker, W., 1976, Soluble blood group reactive substances in the hemolymph of Biomphalaria glabrata (Mollusca), J. Invertebr. Pathol. 28:301.PubMedCrossRefGoogle Scholar
  168. Stauber, L. A., 1950, The fate of India ink injected intracardially into the oyster, Ostrea virginica (Gmelin), Biol. Bull. 98:227.PubMedCrossRefGoogle Scholar
  169. Stauber, L. A., 1961, Immunity in invertebrates, with special reference to the oyster, Proc. Natl. Shellfish. Assoc. 50:7.Google Scholar
  170. Steinman, R. M., Silver, J. M., and Cohn, Z. A., 1978, Fluid phase pinocytosis, in: Transport of Macromolecules in Cellular Systems (S. C. Silverstein, ed.), pp. 167–179, Dahlem Konferenzen, Berlin.Google Scholar
  171. Stossel, T. P., 1977, Endocytosis, in: Receptors and Recognition, Series A, Vol. 4 (P. Cuatrecasas and M. F. Greaves, eds.), pp. 104–141, Chapman & Hall, London.Google Scholar
  172. Stuart, A. E., 1968, The reticulo-endothelial apparatus of the lesser octopus, Eledone cirrosa, J. Pathol. Bacteriol. 96:401.CrossRefGoogle Scholar
  173. Tauber, J. W., 1976, “Seit”: Standard of comparison for immunological recognition of foreignness, Lancet 2:291.PubMedCrossRefGoogle Scholar
  174. Tripp, M. R., 1958, Disposal by the oyster of intracardially injected red blood cells of vertebrates, Proc. Natl. Shellfish. Assoc. 48:143.Google Scholar
  175. Tripp, M. R., 1960, Mechanisms of removal of injected microorganisms from the American oyster, Crassostrea virginica (Gmelin), Biol. Bull. 119:273.CrossRefGoogle Scholar
  176. Tripp, M. R., 1961, The fate of foreign materials experimentally introduced into the snail, Australorbis glabratus, J. Parasitol. 47:745.PubMedCrossRefGoogle Scholar
  177. Tripp, M. R., 1969, General mechanisms and principles of invertebrate immunity, in: Immunity to Parasitic Animals, Vol. 1 (G. J. Jackson, R. Herman, and I. Singer, eds.), pp. 111–128, North-Holland, Amsterdam.Google Scholar
  178. Tripp, M. R., and Kent, V. E., 1967, Studies on oyster cellular immunity, In Vitro 3:129.CrossRefGoogle Scholar
  179. van Oss, C. J., 1978, Phagocytosis as a surface phenomenon, Annu. Rev. Microbiol. 32:19.PubMedCrossRefGoogle Scholar
  180. Wakelin, D., 1978, Genetic control of susceptibility and resistance to parasitic infection, Adv. Parasitol. 16:219.PubMedCrossRefGoogle Scholar
  181. Walters, M. N.-I., and Papadimitriou, J. M., 1978, Phagocytosis: A review, Crit. Rev. Toxicol. 5:377.CrossRefGoogle Scholar
  182. Wolburg-Buchholz, K., 1972, Blasenzellen im Bindegewebe des Schiundrings von Cepaea nemoralis L. (Gastropoda, Stylommatophora). II, Z. Zellforsch. Mikrosk. Anat. 130:262.CrossRefGoogle Scholar
  183. Yevich, P. P., and Barszcz, C. A., 1977, Neoplasia in soft-shelled clams (Mya arenaria) collected from oil-impacted sites, Ann. N.Y. Acad. Sci. 298:409.CrossRefGoogle Scholar
  184. Yevich, P. P., and Berry, M. M., 1969, Ovarian tumors in the quahog, Mercenaria mercenaria, J. Invertebr. Pathol. 14:266.PubMedCrossRefGoogle Scholar
  185. Yonge, C. M., 1926, Structure and physiology of the organs of feeding and digestion in Ostrea edulis, J. Mar. Biol. Assoc. U.K. 14:295.CrossRefGoogle Scholar
  186. Yoshino, T. P., 1976, Encapsulation response of the marine prosobranch Cerithidea californica to natural infections of Renicola buchanani sporocysts (Trematoda: Renicolidae), Int. J. Parasitol. 6:423.CrossRefGoogle Scholar
  187. Yoshino, T. P., and Cheng, T. C., 1976, Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica, J. Inverted Pathol. 27:367.CrossRefGoogle Scholar
  188. Yoshino, T. P., Cheng, T. C., and Renwrantz, L. R., 1977, Lectin and human blood group determinants of Schistosoma mansoni: Alteration following in vitro transformation of miracidium to mother sporocyst, J. parasitol. 63:818.PubMedCrossRefGoogle Scholar
  189. Zacks, S. I., 1955, The cytochemistry of the amoebocytes and intestinal epithelium of Venus mercenaria (Lamellibranchiata) with remarks on a pigment resembling ceroid, Q. J. Microsc. Sci. 96:57.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Thelma C. Fletcher
    • 1
  • C. Anwyl Cooper-Willis
    • 2
  1. 1.NERC Institute of Marine BiochemistryAberdeenScotland
  2. 2.Department of Microbiology and ImmunologyUniversity of Oregon Health Sciences CenterPortlandUSA

Personalised recommendations