Cellular Defense Systems of the Platyhelminthes, Nemertea, Sipunculida, and Annelida

  • Pierre Valembois
  • Philippe Roch
  • Dominique Boiledieu


The animals considered in this chapter belong to phyla closely related to the Platyhelminthes. We will first consider the position of Platyhelminthes in the animal kingdom (Figure 1). The Platyhelminthes, also called flatworms, consist of three main classes: (1) Turbellaria, which are free-living worms such as the well-known freshwater planarians; (2) Trematoda, which are parasitic worms (e.g., the liver flukes of ruminants); and (3) Cestoda, commonly known as tapeworms.


Graft Rejection Coelomic Fluid Coelomic Cavity Cellular Defense System Eisenia Fetida 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, E. J., and Kukulinsky, N. E., 1975, Hemolysis of vertebrate erythrocytes with tissue extracts of earthworms (Eisenia fetida), J. Reticuloendothelial Soc. 17:170.Google Scholar
  2. Avel, M., 1959, Annélides Oligochètes, in: Traité de Zoologie (P. P. Grasse, ed.), Vol. 5, pp. 224–470, Masson, Paris.Google Scholar
  3. Bacq, Z. M., 1937, L’“amphiporine” et la “nemertine” poisons des vers némertines, Arch. Int. Physiol. 44:190.CrossRefGoogle Scholar
  4. Bahl, K. N., 1947, Excretion in the Oligochaeta, Biol. Rev. 22:109.PubMedCrossRefGoogle Scholar
  5. Bailey, S., Miller, B. J., and Cooper, E. L., 1971, Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction, Immunobiology 21:81.Google Scholar
  6. Baldwin, R. W., 1977, Immune surveillance revisited, Nature (London) 270:557.CrossRefGoogle Scholar
  7. Bang, B. G., and Bang, F. B., 1965, Mucus hypersecretion in a normal isolated non-innervated cell, Cah. Biol. Mar. 6:257.Google Scholar
  8. Bang, B. G., and Bang, F. B., 1974, Invertebrate model for study of macromolecular regulation of mucus secretion, Lancet 30:1292.CrossRefGoogle Scholar
  9. Bang, B. G., and Bang, F. B., 1975, Cell recognition by mucus secreted by urn cell of Sipunculus nudus, Nature (London) 253:634.CrossRefGoogle Scholar
  10. Bang, F. B., 1962, Serological aspects of immunity in invertebrates, Nature (London) 196:88.CrossRefGoogle Scholar
  11. Bang, F. B., 1966, Serological responses in marine worm Sipunculus nudus, J. Immunol. 96:960.PubMedGoogle Scholar
  12. Bang, F. B., 1967, Serological responses among invertebrates other than insects, Fed. Proc. 26:1680.PubMedGoogle Scholar
  13. Bang, F. B., and Bang, B. G., 1962, Studies on sipunculid blood: Immunologic properties of coelomic fluid and morphology of “urn cells” Cah. Biol. Mar. 3:363.Google Scholar
  14. Bang F. B., and Krassner, S. M., 1958, Antibacterial activity of Phascolosoma gouldii blood, Biol. Bull. 115:343.Google Scholar
  15. Baskin, D. G., 1974, The coelomocytes of nereid polychaetes, Contemp. Top. Immunobiol. 4:55.CrossRefGoogle Scholar
  16. Bierne, J., and Langlet, C., 1974, Recherches sur l’immunité de greffe chez les Némertines du genre Lineus. Etude de la réponse primaire à la transplantation hétérospécifique, C. R. Acad. Sci. Ser. D 278:1445.Google Scholar
  17. Blitz, R., 1965, The clearance of foreign material from the coelom of Phascolosoma agassizii, Ph.D. thesis, University of California, Berkeley.Google Scholar
  18. Boiledieu, D., and Valembois, P., 1976, Etude in vitro de l’activité cytotoxique des leucocytes de Siponcles à rencontre d’érythrocytes allogéniques et xénogéniques, C. R. Acad. Sci. Ser. D. 283:247.Google Scholar
  19. Boiledieu, D., and Valembois, P., 1977a, Natural cytotoxic activity of sipunculid leukocytes on allogenic and xenogenic erythrocytes, Dev. Comp. Immunol. 1:207.PubMedCrossRefGoogle Scholar
  20. Boiledieu, D., and Valembois, P., 1977b, Etude d’un modèle in vitro de cytotoxicité naturelle chez les Siponcles, Bull. Soc. Zool. Fr. Suppl. 1, 57.Google Scholar
  21. Boiledieu, D., and Valembois, P., 1977c, The mechanism of leukocyte cytotoxicity studied by time-lapse microcinematography and its inhibition: An example of in vitro specific recognition in invertebrates, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 51–57, Elsevier/North-Holland, Amsterdam.Google Scholar
  22. Boiledieu, D., and Valembois, P., 1978, Mise en évidence d’une synthèse polypeptidique au cours de la réaction de cytotoxicité chez les Siponcles, C. R. Soc. Biol. 172:98.Google Scholar
  23. Bouché, M. B., 1972, Lombriciens de France: Ecologie systématique, Ann. Zool. Ecol. Anim. INRA, Paris.Google Scholar
  24. Bradbury, S., 1959, The botryoidal and vaso-fibrous tissue of the leech Hirudo medicinalis, Q. J. Microsc. Sci. 100:483.Google Scholar
  25. Breton-Gorius, J., 1963, Etude au microscope électronique des cellules chloragogènes d’Arenicola marina L.: Leur rôle dans la synthèse de l’hémoglobine, Ann. Sci. Nat. Zool. Biol. Anim. 5:211.Google Scholar
  26. Brundshuh, G., 1966, Agglutinierende Antikörper gegen Humanerythrozyten bei Hirudo officinalis, Z. Aerztl. Fortbild. 60:196.Google Scholar
  27. Burke, J. M., 1974, Wound healing in Eisenia fetida (Oligochaeta). III. A fine structural study of the role of non epidermal tissue, Cell Tissue Res. 154:83.PubMedCrossRefGoogle Scholar
  28. Burnet, F. M., 1968, Evolution of the immune process in invertebrates, Nature (London) 218:426.CrossRefGoogle Scholar
  29. Cameron, G. R., 1932, Inflammation in earthworms, J. Pathol. Bacteriol. 35:933.CrossRefGoogle Scholar
  30. Cantacuzène, J., 1922a, Réactions d’immunité chez Sipunculus nudus vacciné contre une bactérie, C. R. Soc. Biol. 87:264.Google Scholar
  31. Cantacuzène, J., 1922b, Sur le rôle agglutinant des urnes chez Sipunculus nudus, C. R. Soc. Biol. 87:259.Google Scholar
  32. Cantacuzène, J., 1922c, Sur le sort ultérieur des urnes chez Sipunculus nudus au cours de l’infection et de l’immunisation, C. R. Soc. Biol. 87:283.Google Scholar
  33. Cantacuzène, J., 1928, Recherches sur les réactions d’immunité chez les invertébrés: Réactions d’immunité chez le Sipunculus nudus, Arch. Roum. Pathol. Exp. Microbiol. 1:1.Google Scholar
  34. Chaet, A. B., 1955, Further studies on the toxic factor in Phascolosoma, Biol. Bull. 109:356.Google Scholar
  35. Chaet, A. B., 1956, Mechanism of toxic factor release, Biol. Bull. 111:298.Google Scholar
  36. Chapron, C., 1970, Régénération céphalique chez le Lombricien Eisenia foetida unicolor: Structure, origine et rôle du bouchon cicatriciel, Arch. Zool. Exp. Gen. 3:217.Google Scholar
  37. Châteaureynaud-Duprat, P., 1970, Specificity of the allograft rejection in Eisenia foetida, Transplant. Proc. 2:222.PubMedGoogle Scholar
  38. Châteaureynaud-Duprat, P., and Izoard, F., 1972, Etude in vitro de l’histocompatibilité chez les Lombriciens, C. R. Acad. Sci. Ser. D 275:2795.Google Scholar
  39. Châteaureynaud-Duprat, P., and Izoard, F., 1973, Etude des mécanismes de défense chez Lumbricus terrestris, C. R. Acad. Sci. Ser. D 276:2859.Google Scholar
  40. Châteaureynaud-Duprat, P., and Izoard, F., 1977a, Etude comparée in vitro des réactions de défense antigreffe chez deux genres de Lombriciens Eisenia et Lumbricus, C. R. Acad. Sci. Ser. D 284:2581.Google Scholar
  41. Châteaureynaud-Duprat, P., and Izoard, F., 1977b, Compared study of immunity between two genera of lumbriciens, Eisenia and Lumbricus, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 33–40, Elsevier/North-Holland, Amsterdam.Google Scholar
  42. Châteaureynaud-Duprat, P., and Izoard, F., 1978, Etude comparée des mécanismes de défense de l’organisme dans deux genres de Lombriciens, Eisenia et Lumbricus, Ann. Biol. 17:455.Google Scholar
  43. Cheng, T. C., and Streisfeld, S. D., 1963, Innate phagocytosis in the trematodes Megalodiscus temperatus and Haematoloechus sp., J. Morphol. 113:375.PubMedCrossRefGoogle Scholar
  44. Chipman, D. M., and Sharon, N., 1969, Mechanism of lysozyme action, Science 165:454.PubMedCrossRefGoogle Scholar
  45. Cohen, N., and Borysenko, M., 1970, Acute and chronic graft rejection: Possible phylogeny of transplantation antigens, Transplant. Proc. 2:333.Google Scholar
  46. Cooper, E. L., 1968, Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida, Transplantation 6:322.PubMedCrossRefGoogle Scholar
  47. Cooper, E. L., 1969a, Specific tissue graft rejection in earthworms, Science 166:1414.PubMedCrossRefGoogle Scholar
  48. Cooper, E. L., 1969b, Chronic allograft rejection in L. terrestris, J. Exp. Zool. 171:69.PubMedCrossRefGoogle Scholar
  49. Cooper, E. L., 1970, Transplantation immunity in helminths and annelids, Transplant. Proc. 2:216.PubMedGoogle Scholar
  50. Cooper, E. L., 1973, Earthworm coelomocytes: Role in understanding the evolution of cellular immunity. I. Formation of monolayers and cytotoxicity, in: Proceedings, III International Colloquium on Invertebrate Tissue Culture (J. Rehácek, D. Blaskovic, and W. F. Hink, eds.), pp. 381–404, Publishing House of the Slovak Academy of Science, Bratislava.Google Scholar
  51. Cooper, E. L., and Aponte, A., 1968, Chronic allograft rejection in the iguana Clenosaura pectinata, Proc. Soc. Exp. Biol. Med. 128:150.PubMedGoogle Scholar
  52. Cooper, E. L., and Baculi, B. S., 1968, Cell responses during xenograft rejection in annelids, Anat. Rec. 160:335.Google Scholar
  53. Cooper, E. L., and Rubilotta, L. M., 1969, Allograft rejection in Eisenia foetida, Transplantation 8:220.PubMedCrossRefGoogle Scholar
  54. Cooper, E. L., Acton, R. T., Weinheimer, P., and Evans, E. E., 1969, Lack of bactericidal response in the earthworm Lumbricus terrestris after immunization with bacterial antigens, J. Invert. Pathol. 14:402.CrossRefGoogle Scholar
  55. Cooper, E. L., Lemmi, C. A. E., and Moore, T. C., 1974, Agglutinins and cellular immunity in earthworms, Ann. N.Y. Acad. Sci. 234:34.PubMedCrossRefGoogle Scholar
  56. Cudkowicz, G., and Hochman, P. S., 1979, Do natural killer cells engage in regulated reactions against self to ensure homeostasis?, Immunol. Rev. 44:13.PubMedCrossRefGoogle Scholar
  57. Cuénot, L., 1902, Organes agglutinants et organes ciliophagocytaires, Arch. Zool. Exp. Gen. 10:79.Google Scholar
  58. Cuénot, L., 1913, Excretion et phagocytose chez les Sipunculiens, C. R. Soc. Biol. 74:159.Google Scholar
  59. Cushing, J. E., and Boraker, D. K., 1975, Some specific aspects of cell-surface recognition by sipunculid coelomocytes, in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 35–44, Plenum Press, New York.Google Scholar
  60. Cushing, J., Boraker, D., and Keogh, E., 1965, Reactions of sipunculid worms to intracoelomic injections of homologous eggs, Fed. Proc. 24:504.Google Scholar
  61. Cushing, J. E., McNelly, J. L., and Tripp, M. R., 1969, Comparative immunology of sipunculid coelomic fluid, J. Invert. Pathol. 14:4.CrossRefGoogle Scholar
  62. Dales, R. P., 1961, The coelomic and peritoneal cell systems of some sabellid polychaetes, Q. J. Microsc. Sci. 102:327.Google Scholar
  63. Dales, R. P., 1964, The coelomocytes of the terebellid polychaete Amphitrite johnstoni, Q. J. Microsc. Sci. 105:263.Google Scholar
  64. Dales, R. P., 1978, The basis of graft rejection in the earthworms Lumbricus terrestris and Eisenia fetida, J. Invert. Pathol. 32:264.CrossRefGoogle Scholar
  65. Dawydoff, C., 1959, Ontogenèse des Annelides, in: Traité de Zoologie (P. P. Grasse, ed.), Vol. 5, pp. 594–686, Masson, Paris.Google Scholar
  66. Day, N. K. B., Gewürz, H., Johannsen, R., Finstad, J., and Good, R. A., 1970, Complement and complement-like activity in lower vertebrates and invertebrates, J. Exp. Med. 132:941.PubMedCrossRefGoogle Scholar
  67. De Duve, C., and Wattiaux, R., 1966, Functions of lysosomes, Annu. Rev. Physiol. 28:435.PubMedCrossRefGoogle Scholar
  68. Dhainaut, A., 1966, Etude ultrastructurale de l’évolution des éléocytes chez Nereis pelagica L. (Annélide polychète) à l’approche de la maturité sexuelle, C. R. Acad. Sci. 262:2740.Google Scholar
  69. Doeksen, J., and Van Wingerden, C.G., 1964, Notes on the activity of earthworms. II. Observations on diapause in earthworm Allolobophora caliginosa, Jahrb. Inst. Biol. Scheik. 1964:181.Google Scholar
  70. Du Pasquier, L., 1971, Etude comparée d’un facteur cytolytique humoral chez une larve d’amphibien et chez un oligochète, Arch. Zool. Exp. Gen. 142:81.Google Scholar
  71. Du Pasquier, L., 1974, The genetic control of histocompatibility reactions: Phylogenetic aspects, Arch. Biol. 85:41.Google Scholar
  72. Du Pasquier, L., and Duprat, P., 1968, Aspects humoraux et cellulaires d’une immunité naturelle non spécifique chez l’Oligochète Eisenia fetida (Sav.), C. R. Acad. Sci. Ser. D 266:538.Google Scholar
  73. Du Pasquier, L., Duprat, P., and Izoard, F., 1966, Etude immunologique des hétérogreffes chez les Annélides Oligochètes, C.R. Acad. Sci. 262:2389.Google Scholar
  74. Duprat, P., 1964, Mise en évidence de réactions immunitaires dans les homogreffes de paroi du corps chez le Lombricien Eisenia fetida typica, C. R. Acad. Sci. 259:4177.Google Scholar
  75. Duprat, P., 1967, Etude de la prise et du maintien d’un greffon de paroi du corps chez le Lombricien Eisenia fetida typica, Ann. Inst. Pasteur Paris 118:867.Google Scholar
  76. Duprat, P., and Bouc-Lassalle, A. M., 1967, Mise au point et étude du liquide coelomique du Lombricien Eisenia fetida Sav., Bull. Soc. Zool. Fr. 92:767.Google Scholar
  77. Dybas, L., 1976, A light and electron microscopic study of the ciliated urn of Phascolosoma agassizii (Sipunculida), Cell Tissue Res. 169:67.PubMedCrossRefGoogle Scholar
  78. Eckelbarger, K. J., 1976, Origin and development of the amoebocytes of Nicolea zoostericola (Polychaeta Terebellidae) with a discussion of their possible role in oogenesis, Mar. Biol. 36:169.CrossRefGoogle Scholar
  79. Edwards, C. A., and Lofty, J. R., 1977, Biology of Earthworms, 2nd ed., Chapman & Hall, London.CrossRefGoogle Scholar
  80. Ehrenreich, B. A., and Cohn, Z. A., 1967, The uptake and digestion of iodinated human serum lbumin by macrophages in vitro, J. Exp. Med. 126:941.PubMedCrossRefGoogle Scholar
  81. Evans, E. E., Weinheimer, P. F., Acton, R. T., and Cushing, J. E., 1969, Induced bactericidal esponse in a sipunculid worm, Nature (London) 223:695.CrossRefGoogle Scholar
  82. Feng, S. Y., and Canzonier, W. J., 1970, Humoral responses in the American oyster (Crassostrea irginica) infected with Bucephalus sp. and Minchinia nelsoni, in: A Symposium on Diseases of Fishes and Shellfishes (S. F. Snieszko, ed.), pp. 497–510, American Fisheries Society, Washington, D.C.Google Scholar
  83. Gibson, R., 1972, Nemerteans, 1st ed., Hutchinson, London.Google Scholar
  84. Gigli, I., and Austen, K. F., 1971, Phylogeny and function of the complement system, Annu. Rev. Microbiol. 25:309PubMedCrossRefGoogle Scholar
  85. Good, R. A., 1964, Evolution of the immune response, J. Exp. Med. 119:105.PubMedCrossRefGoogle Scholar
  86. Greenberg, A. H., and Playfair, J. H. L., 1974, Spontaneously arising cytotoxicity to the P-815-Ymastocytoma in NZB mice, Clin. Exp. Immunol. 16:99.PubMedGoogle Scholar
  87. Halstead, B. W., 1965, Poisonous and Venomous Marine Animals of the World, Volume I, Invertebrates, U.S. Government Printing Office, Washington, D.C.Google Scholar
  88. Harant, J., and Grasse, P., 1959, Classe des Annélides achètes ou Hirundinées ou Sangsues, in: Traité de Zoologie (P. P. Grasse, ed.), Vol. 5, pp. 471–593, Masson, Paris.Google Scholar
  89. Hay, E. D., and Coward, S. J., 1975, Fine structure studies on the planarian Dugesia. I. Nature of the “neoblast” and other cell types in non injured worms, J. Ultrastruct. Res. 50:1.PubMedCrossRefGoogle Scholar
  90. Herberman, R. B., Nunn, M. E., Holden, H. T., and Lavrin, D. H., 1975, Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells, Int. J. Cancer 16:230.PubMedCrossRefGoogle Scholar
  91. Hess, R. H., 1970, The fine structure of coelomocytes in the annelid Enchytraeus fragmentosus, J. Morphol. 132:335.PubMedCrossRefGoogle Scholar
  92. Hildemann, W. H., and Cohen, N., 1967, Weak histocompatibilities: Emerging immunogenetic rules and generalizations, in: Histocompatibility Testing (E. S. Curtoni, P. L. Mattwiz, and R. M. Tosi, eds.), pp. 13–46, Munksgaard, Copenhagen.Google Scholar
  93. Hilgard, H. R., 1970, Studies of protein uptake by echinoderm cells: Their possible significance in relation to the phylogeny of immune responses, Transplant. Proc. 2:240.PubMedGoogle Scholar
  94. Hirsch, J. G., 1959, Antimicrobial factors in tissues and phagocytic cells, Bacteriol. Rev. 24:133.Google Scholar
  95. Hostetter, R. K., and Cooper, E. L., 1972, Coelomocytes as effector cells in earthworm immunity, Immunol. Commun. 1:155.PubMedGoogle Scholar
  96. Hostetter, R. K., and Cooper, E. L., 1973, Cellular anamnesis in earthworms, Cell. Immunol. 9:384.PubMedCrossRefGoogle Scholar
  97. Hostetter, R. K., and Cooper, E. L., 1974, Earthworm cellular immunity, Contemp. Top. Immunobiol. 4:91.CrossRefGoogle Scholar
  98. Hyman, L. H., 1951, The invertebrates: Platyhelminthes and Rhynchocoela (Vol. II), McGraw-Hill, New York.Google Scholar
  99. Isern, J., 1969, Sobre les urnas de Sipunculus nudus, P. Inst. Biol. Apl. 46:115.Google Scholar
  100. Izoard, F., 1964, Evolution des greffes hétéroplastiques de paroi du corps réalisées, chez les Lombriciens, entre animaux de même genre mais d’espèces différentes: Recherches sur le genre Lumbricus, C. R. Acad. Sci. 258:5972.Google Scholar
  101. Izoard, F., 1971, Contribution à l’étude des hétérogreffes de paroi du corps chez les Lombriciens: Aspects histologiques de révolution du greffon et relations entre le maintien et le degré de la parenté zoologique avec le portegreffe, Thèse de Sciences, Bordeaux, n° 329.Google Scholar
  102. Izoard, F., 1972, Evolution de greffes hétéroplastiques de paroi du corps entre espèces différentes du genre Lumbricus: Influence du biotope de récolte, C. R. Acad. Sci. Ser. D 276:3061.Google Scholar
  103. Izoard, F., 1973, Relations antigéniques entre différentes espèces du genre Lumbricus: Influence du biotope de récolte, C. R. Acad. Sci. Ser. D 276:673.Google Scholar
  104. Jennings, J. B., 1957, Studies on feeding, digestion and food storage in free-living flatworms (Platyhelminthes: Turbellaria), Biol. Bull. 112:63.CrossRefGoogle Scholar
  105. Jensen, D. D., 1960, Hoplonemertines, myxinoids and deuterostome origins, Nature (London) 188:649.CrossRefGoogle Scholar
  106. Jolies, P., and Zuili, S., 1960, Purification et étude comparée de nouveaux lysozymes: Extraits du poumon de poule et de Nephthys hombergi, Biochim. Biophys. Acta 39:212.CrossRefGoogle Scholar
  107. Joseph, H., 1910, Die Amöbocyten von Lumbricus: Ein Beitrag zur Naturgeschichte der zellulären Zentren, Arb. Zool. Inst. Wein. 18:1.Google Scholar
  108. Kiessling, R., Klein, E., Pross, H., and Wigzell, H., 1975, “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cells, Eur. J. Immunol. 5:117.PubMedCrossRefGoogle Scholar
  109. Klein, J., 1977, Evolution and function of the major histocompatibility system: Facts and speculation, in: The Major Histocompatibility System in Man and Animals (D. Götze, ed.), pp. 339–378, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  110. Kolb, H., 1977, On the phylogenetic origin of the immune system: A hypothesis, Dev. Comp. Immunol. 1:193.PubMedCrossRefGoogle Scholar
  111. Kollmann, M., 1908, Recherches sur les leucocytes et le tissu lymphoïde des Invertébrés, Ann. Sci. Nat. Zool. Biol. Anim Ser. 9 8:1.Google Scholar
  112. Korschelt, E., 1914, Über Transplantationsversuche, Ruhezustände und Lebensdauer der Lumbriciden, Zool. Anz. 43:537.Google Scholar
  113. Korschelt, E., 1927, Regeneration und Transplantation, Vol. II (in two parts), Borntraeger, Berlin.Google Scholar
  114. Krassner, S. M., 1963, Further studies on an antibacterial factor in the blood of Phascolosoma gouldii, Biol. Bull. 125:382.Google Scholar
  115. Krassner, S. M., and Flory, B., 1970, Antibacterial factors in the sipunculid worms Golfingia gouldii and Dendrostomum pyroïdes, J. Invert. Pathol. 16:331.CrossRefGoogle Scholar
  116. Kükenthal, W., 1885, Die lymphoiden Zellen der Anneliden, Jena. Z. Naturwiss. 18:319.Google Scholar
  117. Langlet, C., and Bierne, J., 1973, Recherches sur l’immunité de greffes chez les Némertines du genre Lineus: Evolution de transplants homospécifiques et hétérospécifiques, C. R. Acad. Sci. Ser. D 276:2485.Google Scholar
  118. Langlet, C., and Bierne, J., 1975, Recherches sur l’immunité de greffe chez les Némertines du genre Lineus: Rejet accéléré des secondes greffes hétérospécifiques incompatibles, C. R. Acad. Sci. Ser. D 281:595.Google Scholar
  119. Langlet, C., and Bierne, J., 1977, The immune response to xenografts in némertines of the genus Lineus, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 17–26, Elsevier/North-Holland, Amsterdam.Google Scholar
  120. Laverack, M. S., 1963, The Physiology of Earthworms, Pergamon Press, Elmsford, N.Y.Google Scholar
  121. Lemmi, C. A. E., 1974, Tissue graft rejection mechanisms in the earthworm Lumbricus terrestris: Specific induction of coelomocyte proliferation, Ph.D. thesis, University of California, Los Angeles.Google Scholar
  122. Leypoldt, H., 1910, Transplantationsversuche an Lumbriciden. Zur Beeinflussung der Regeneration eines kleinen Pfropfstückes durch einen grösseren Komponenten, Inaugural-Dissertation zur Erlangung der Doktor, wörde Hohen Philosophischen Fakultät der Universität Narburg, pp. 1–20.Google Scholar
  123. Leypoldt, H., 1911, Transplantationsversuch an Lumbriciden. Transplantation Kleiner Hautstückchen, Arch. Entwicklungsmech. Org. 31:21.Google Scholar
  124. Liebmann, E., 1926, Untersuchungen über das Chloragogen der Lumbriciden, Zool. Anz. 69:65.Google Scholar
  125. Liebmann, E., 1942a, The role of the chloragogue in regeneration of Eisenia foetida Sav., J. Morphol. 70:151.CrossRefGoogle Scholar
  126. Lindh, N. O., 1959, Heteroplastic transplantation of transversal body sections in flatworms, Ark. Zool. 12:183.Google Scholar
  127. Lindner, E., 1965, Ferritin und Hämoglobin im Chloragogen von Lumbriciden, Z. Zellforsch. Mikrosk. Anat. 66:891.PubMedCrossRefGoogle Scholar
  128. Linthicum, D. S., Stein, E. A., Marks, D. H., and Cooper, E. L., 1977a, Electron microscopic observations of normal coelomocytes from the earthworm, Lumbricus terrestris, Cell Tissue Res. 185:315.Google Scholar
  129. Linthicum, D. S., Stein, E. A., Marks, D., and Cooper, E. L., 1977b, Graft rejection in earthworms: An electron microscopic study, Eur. J. Immunol. 7:871.PubMedCrossRefGoogle Scholar
  130. Loeb, L., 1945, The Biological Basis of Individuality, Thomas, Springfield, Ill.CrossRefGoogle Scholar
  131. Lopez, D. M., Sigel, M. M., and Lee, J. C., 1974, Phylogenetic studies on T-cells. I. Lymphocytes of the shark with differential response to phytohemagglutinin and concanavalin A, Cell. Immunol. 10:287.PubMedCrossRefGoogle Scholar
  132. Marcou, J., and Volkonsky, M., 1933, Les lignées leucocytaires des Sipunculidés, Arch. Anat. Microsc. Morphol. Exp. 29:245.Google Scholar
  133. Marsden, J. R., 1966, The coelomocytes of Hermodice carunculata (Polychaeta: Amphinomidae) in relation to digestion and excretion, Can. J. Zool. 44:377.CrossRefGoogle Scholar
  134. Metchnikoff, E., 1892, Leçons sur la Pathologie Comparée de l’Inflammation, Masson, Paris.Google Scholar
  135. Mill, P. J. (ed.), 1978, Physiology of Annelids, Academic Press, New York.Google Scholar
  136. Mitchison, N. A., 1953, Passive transfer of transplantation immunity, Nature (London) 171:267.CrossRefGoogle Scholar
  137. Morgun, L. I., 1950, On the question of a complement in invertebrates, Mikorbiol. Zh. (Akad. Nauk. Ukr. RSR) 11:43.Google Scholar
  138. Novikoff, A. B., 1963, Lysosomes in the physiology and pathology of cells: Contributions of staining methods, in: Ciba Symposium on Lysosomes (A.V.S. de Reuck, ed.), pp. 37–77, Churchill, London.Google Scholar
  139. Ohuye, T., 1942, On the blood corpuscles and the hemopoiesis of a nemertean Lineus fuscoviridis and of a sipunculid Dendrostoma minor, Sci. Rep. Tohoku Imp. Univ. 17:187.Google Scholar
  140. Ohuye, T., Ochi, O., and Miyata, I., 1961, On the morphogenesis and histochemistry of the “urn” found in the coelomic fluid of a sipunculid Phascolosoma scolops, Mem. Ehime Univ. Nat. Sci. Sect. II B. 4:145.Google Scholar
  141. Okaichi, T., and Hashimoto, Y., 1962, Physiological activities of nereistoxin, Bull. Jpn. Soc. Fish. 28:930.CrossRefGoogle Scholar
  142. Omodeo, P., 1956, Contribuoto alia revisione dei Lumbricidae, Arch. Zool. Ital. 41:129.Google Scholar
  143. Osborne, P. J., and Miller, A. T., 1962, Uptake and intracellular digestion of proteins (peroxidase) in planarians, Biol. Bull. 123:589.CrossRefGoogle Scholar
  144. Parry, M. J., 1978, Survival of body wall autografts, allografts and xenografts in the earthworm Eisenia foetida, J. Invert. Pathol. 31:383.CrossRefGoogle Scholar
  145. Pearse, A. G., 1961, Histochemistry: Theoretical and Applied, 2nd ed., Churchill, London.Google Scholar
  146. Pedersen, K. J., 1961, Some observations on the fine structure in the planarian protonephridia and gastrodermal phagocytes, Z. Zellforsch. Mikrosk. Anat. 53:609.CrossRefGoogle Scholar
  147. Perin, J. P., and Jolies, P., 1972, The lysozyme from Nephthys hombergi (annelid), Biochim. Biophys. Acta 263:683.PubMedCrossRefGoogle Scholar
  148. Picton, L. J., 1898, On the heart-body and coelomic fluid of certain polychaetes, Q. J. Microsc. Sci. 41:263.Google Scholar
  149. Porchet, B., 1928, Contribution à l’étude des réactions immunitaires chez les Invertébrés, Bull. Soc. Vaudoise Sci. Nat. 56:553.Google Scholar
  150. Rabin, H., and Bang, F. B., 1964, In vitro studies of the antibacterial activity of Golfingia gouldii coelomic fluid, J. Insect. Pathol. 6:457.Google Scholar
  151. Roch, P., 1973, Contribution à l’étude du transfert de l’immunité antigreffe chez le Lombricien Eisenia fetida Sav., C. R. Acad. Sci. Ser. D 276:1369.Google Scholar
  152. Roch, P., 1977, Réactivité in vitro des leucocytes du Lombricien Eisenia fetida Sav. à quelques substances mitogéniques, C. R. Acad. Sci. Ser. D 284:705.Google Scholar
  153. Roch, P., 1979a, Leukocyte DNA-synthesis in grafted lumbricids: An approach to study histocompatibility in invertebrates, Dev. Comp. Immunol. 3:417.PubMedCrossRefGoogle Scholar
  154. Roch, P., 1979b, Protein analysis of earthworm coelomic fluid. I. Polymorphic system of the natural hemolysin of Eisenia fetida andrei, Dev. Comp. Immunol. 3:599.PubMedCrossRefGoogle Scholar
  155. Roch, P., and Valembois, P., 1977, Physiological heterogeneity and cellular differentiation of earthworm leukocytes studied by concanavalin A, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 41–49, Elsevier/North-Holland, Amsterdam.Google Scholar
  156. Roch, P., and Valembois, P., 1978, Evidence for concanavalin A-receptors and their redistribution on lumbricid leukocytes, Dev. Comp. Immunol. 2:51.PubMedCrossRefGoogle Scholar
  157. Roch, P., Valembois, P., and Du Pasquier, L., 1975, Response of earthworm leukocytes to con- canavalin A and transplantation antigens, Adv. Exp. Med. Biol. 64:45.PubMedGoogle Scholar
  158. Romieu, M., 1921, Les inclusions cristallines des éléocytes de Nereis et leurs relations avec les granulations eosinophiles, C.R. Acad. Sci. 168:367.Google Scholar
  159. Romieu, M., 1923, Recherches histophysiologiques sur le sang et sur le corps cardiaque des an- nélides polychètes, Arch. Morphol. Gen. Exp. 15:1.Google Scholar
  160. Roots, B. I., 1957, Nature of chloragogue granules, Nature (London) 179:679.CrossRefGoogle Scholar
  161. Roots, B. I., 1960, Some observations on the chloragogous tissue of earthworms, Comp. Biochem. Physiol. 1:218.CrossRefGoogle Scholar
  162. Rosa, D., 1896, Les lymphocytes des Oligochètes, Arch. liai. Biol. 25:444.Google Scholar
  163. Ryder, T. A., and Bowen, I. D., 1975, The fine structural localization of acid phosphatase activity in Polycelis tenuis (Iijima), Protoplasma 83:79.CrossRefGoogle Scholar
  164. Salton, M. R. J., 1957, The properties of lysozyme and its action on microorganisms, Bacterial. Rev. 27:82.Google Scholar
  165. Schroeder, P. C., 1971, Studies on oogenesis in the polychaete annelid Nereis grubei (Kinberg). II. Oocyte growth rates in intact and hormone-deficient animals, Gen. Comp. Endocrinol. 16:312.PubMedCrossRefGoogle Scholar
  166. Schubert, V. I., and Messner, B., 1971, Unterschrengen über das Vorkommer von Lysozym bei Anneliden, Zool. Jahrb. Physiol. 76:36.Google Scholar
  167. Semal-Van Gänsen, P., 1956, Les cellules chloragogènes des Lombriciens, Bull. Biol. Fr. Belg. 90:335.Google Scholar
  168. Semai-Van Gänsen, P., 1957, Le lipopigment des chloragosomes des Lombriciens, Ann. Histochim. 2:41.Google Scholar
  169. Semal-Van Gänsen, P., 1958, Physiologie des cellules chloragogènes d’un Lombricien, Enzymologia 20:98.Google Scholar
  170. Semal-Van Gänsen, P., and van der Meersche, G., 1958, L’ultrastructure des cellules chloragogènes, Bull. Microsc. Appl. 8:7.Google Scholar
  171. Sichel, G., 1964, Osservazione sull’ ultrastruttura dei celomocite di Perinereis cultrifera (Grube), Atti Accad. Gioenia Sci. Nat. Catania 8:86.Google Scholar
  172. Skaer, R. J., 1961, Some aspects of the cytology of Polycelis nigra, Q. J. Microsc. Sci. 102:295.Google Scholar
  173. Sparks, A. K., 1972, Invertebrate Pathology: Noncommunicable Diseases Academic Press, New York.Google Scholar
  174. Stang-Voss, C., 1970, Zur Ultrastruktur der Blutzellen wirbelloser Tiere. II. Über die Blutzellen von Golfingia gouldii (Sipunculidae), Z. Zellforsch. Mikrosk. Anat. 106:200.PubMedCrossRefGoogle Scholar
  175. Stang-Voss, C., 1971, Zur Ultrastruktur der Blutzellen wirbelloser Tiere. IV. Die Hämocyten von Eisenia fetida L. (Sav.) (Annelidae), Z. Zellforsch. Mikrosk. Anat. 117:451.PubMedCrossRefGoogle Scholar
  176. Stang-Voss, C., 1974, On the ultrastructure of invertebrate hemocytes: An interpretation of their role in comparative hematology, Contemp. Top. Immunobiol. 4:65.CrossRefGoogle Scholar
  177. Stein, E. A., and Cooper, E. L., 1978, Cytochemical observations of coelomocytes from the earthworm Lumbricus terrestris, Histochem. J. 10:657.PubMedCrossRefGoogle Scholar
  178. Stein, E., Avtalion, R. R., and Cooper, E. L., 1977, The coelomocytes of the earthworm Lumbricus terrestris: Morphology and phagocytic properties, J. Morphol. 153:467.PubMedCrossRefGoogle Scholar
  179. Stephenson, J., 1930, The Oligochaeta, Oxford University Press, London.Google Scholar
  180. Stolte, H. A., 1955, Bronns Klassen und Ordnungen des Tierreichs, Oligochaeta 4:363.Google Scholar
  181. Tetry, A., 1959, Classe des sipuneuliens, in: Traité de Zoologie (P. P. Grasse, ed.), pp. 785–854, Masson, Paris.Google Scholar
  182. Theodor, J., 1970, Distinction between “self” and “not self” in lower invertebrates, Nature (London) 227:690.CrossRefGoogle Scholar
  183. Theodor, J., 1971, Reconnaissance du “self” ou reconnaissance des “not self,” Arch. Zool. Exp. Gen. 112:113.Google Scholar
  184. Thomas, J. A., 1932, Recherches cytologiques et expérimentales sur les vésicules émigmatiques et les urnes des Siponcles, Arch. Zool. Exp. Gen. 73:22.Google Scholar
  185. Toupin, J., and Lamoureux, G., 1976a, Coelomocytes of earthworms: PHA responsiveness, in: Phytogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 19–25, Elsevier/North-Holland, Amsterdam.Google Scholar
  186. Toupin, J., and Lamoureux, G., 1976b, Coelomocytes of earthworms: The T-cell-like rosette, Cell. Immunol. 26:127.PubMedCrossRefGoogle Scholar
  187. Towle, A., 1962, Physiological changes in Phascolosoma agassizii Kerferstein during the course of an annual reproductive cycle, Ph.D. thesis, Stanford University.Google Scholar
  188. Triplett, E. L., Cushing, J. E., and Durall, G. L., 1958, Observations on some immune reactions of the sipunculid worm Dendrostomum zostericolum, Am. Nat. 92:287.CrossRefGoogle Scholar
  189. Tyler, A., 1946, Natural heteroagglutinins in the body fluids and seminal fluids of various invertebrates, Biol. Bull. 90:213.PubMedCrossRefGoogle Scholar
  190. Valembois, P., 1963a, Etude anatomique de révolution de greffons hétéroplastiques de paroi du corps chez quelques Lombriciens, C. R. Acad. Sci. 257:3227.Google Scholar
  191. Valembois, P., 1963b, Recherches sur la nature de la réaction antigreffe chez le Lombricien Eisenia fetida Sav., C. R. Acad. Sci. 257:3488.Google Scholar
  192. Valembois, P., 1968, Libération de phosphatase acide dans les cellules musculaires d’un greffon de paroi du corps chez un Lombricien, J. Mierosc. (Paris) 7:61.Google Scholar
  193. Valembois, P., 1970, Etude d’une hétérogreffe de paroi du corps chez les Lombriciens: Aspects cytologiques, physiologiques et immunologiques de l’évolution du greffon et de la réaction du porte-greffe, Thèse de Doctorat es Sciences Naturelles, Bordeaux.Google Scholar
  194. Valembois, P., 1971a, Rôle des leucocytes dans l’acquisition d’une immunité antigreffe spécifique chez les Lombriciens, Arch. Zool. Exp. Gen. 112:97.Google Scholar
  195. Valembois, P., 1971b, Evolution de la musculature d’un xénogreffon de paroi du corps chez un Lombricien, J. Mierosc. (Paris) 11:339.Google Scholar
  196. Valembois, P., 1971c, Etude ultrastructurale des coelomocytes du Lombricien Eisenia fetida, Bull. Soc. Zool. Fr. 96:59.Google Scholar
  197. Valembois, P., 1974, Cellular aspects of graft rejection in earthworms and some other Metazoa, Contemp. Top. Immunobiol. 4:121.CrossRefGoogle Scholar
  198. Valembois, P., and Boiledieu, D., 1981, Fine structure and functions of erythrocytes and leucocytes of Sipunculus nudus, J. Morphol. 77:163.Google Scholar
  199. Valembois, P., and Cazaux, M., 1970, Etude autoradiographique du rôle trophique des cellules chloragogènes des vers de terre, C. R. Soc. Biol. 164:1015.Google Scholar
  200. Valembois, P., and Roch, P., 1977, Identification par autoradiographie des leucocytes stimulés à la suite de plaies ou de greffes chez un ver de terre, Biol. Cell. 28:81.Google Scholar
  201. Valembois, P., Roch, P., and Du Pasquier, L., 1973, Dégradation in vitro de protéines étrangères par les macrophages de Lombricien Eisenia fetida Sav., C. R. Acad. Sci. Ser. D 277:5.Google Scholar
  202. Valembois, P., Roch, P., and Chapron, C., 1977b, Stimulation mitogénique et différenciation cellulaire chez un Invertébré (Eisenia fetida Sav.), Bull. Soc. Zool. Fr. Suppl. 1:51.Google Scholar
  203. Valembois, P., Roch, P., and Boiledieu, D., 1980, Natural and induced cytotoxicities in sipunculid and annelid worms, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 47–55, Elsevier/North-Holland, Amsterdam.Google Scholar
  204. Valembois, P., Roch, P., and Du Pasquier, L., 1981, Evidence of a MLR-like reaction in an invertebrate, the earthworm Eisenia fetida, in: Aspects of Developmental and Comparative Immunology (J. B. Solomon, ed.), pp. 23–30, Pergamon Press, Elmsford, N.Y.Google Scholar
  205. Vernet, G., and Gontcharoff, M., 1975, Etude autoradiographique de l’incorporation de l’acide A- aminolévulinique 3H et de 55Fe dans les éléments figurés du sang de Lineus lacteus Montagu (Hétéronémertes), C. R. Acad. Sci. Ser. D 280:1413.Google Scholar
  206. Vernet, G., and Gontcharoff, M., 1976, Cytological study of the blood corpuscles of Lineus lacteus (Rhynchocoela, Lineidae), Cytobios 17:137.PubMedGoogle Scholar
  207. Volkonsky, M., 1933, Digestion intracellulaire et accumulation des colorants acides: Etude cytologique des cellules sanguines de Sipunculides, Bull. Biol. Fr. Belg. 67:135.Google Scholar
  208. Warr, G. W., and Marchalonis, J. J., 1978, Specific immune recognition by lymphocytes: An evolutionary perspective, Q. Rev. Biol. 53:225.PubMedCrossRefGoogle Scholar
  209. Weinheimer, P. F., Acton, R. T., Cushing, J. E., and Evans, E. E., 1970, Reactions of sipunculid coelomic fluid with erythrocytes, Life Sci. 9:145.PubMedCrossRefGoogle Scholar
  210. Willmer, E. N., 1974, Nemertines as possible ancestors of the vertebrates, Biol. Rev. 49:321.PubMedCrossRefGoogle Scholar
  211. Wright, R. K., 1976, Phylogenetic origin of the vertebrate lymphocyte and lymphoid tissue, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 57–70, Elsevier/North-Holland, Amsterdam.Google Scholar
  212. Zarling, J. M., Nowinsky, R. C., and Bach, F. H., 1975, Lysis of leukemia cells by spleen cells of normal mice, Proc. Natl. Acad. Sci. USA 72:2780.PubMedCrossRefGoogle Scholar
  213. Zucker-Franklin, D., and Hirsch, M. D., 1965, Electron microscopic studies on the degranulation of rabbit peritoneal leukocytes during phagocytosis, J. Exp. Med. 120:569.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Pierre Valembois
    • 1
    • 2
  • Philippe Roch
    • 1
    • 2
  • Dominique Boiledieu
    • 1
    • 2
  1. 1.Départment de Biologie du Développementl’Université de Bordeaux ITalence CedexFrance
  2. 2.Centre de Morphologie Expérimentale du CNRSTalence CedexFrance

Personalised recommendations