Advertisement

Cellular Defense Systems of the Coelenterata

  • Charles H. Bigger
  • William H. Hildemann

Abstract

The phylum Coelenterata is composed of three classes: Hydrozoa (e.g., Hydra, hydroids), Scyphozoa (the true jellyfish), and Anthozoa (e.g., sea anemones, sea fans, and corals). Although some, such as the corals and sea whips, are truly sessile, most coelenterates are capable of some form of movement, ranging from creeping on a pedal disc and burrowing to freely swimming. Coelenterates include both marine and freshwater species. They are found from the deepest reaches of the ocean to the intertidal zone, and in some habitats they are one of the dominant animals. Representatives of the phylum have been identified in Precambrian fossils and there are an estimated 11,000 extant species (Russell-Hunter, 1969). The phylum Coelenterata must therefore be counted among the oldest and more successful of the animal groups.

Keywords

Coral Reef Interstitial Cell Scleractinian Coral Golgi Body Ectodermal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., 1969, Physical and chemical characterization of an oyster hemagglutinin, J. Biol. Chetn. 244:4128.Google Scholar
  2. Benacerraf, B., and Burakoff, S. J., 1978, The biological significance of alloreactivity, in: Genetic Control of Autoimmune Disease (N. R. Rose, P. E. Bigazzi, and N. L. Warner, eds.), pp. 321–326, Elsevier/North-Holland, Amsterdam.Google Scholar
  3. Bigger, C. H., 1976, The acrorhagial response in Anthopleura krebsi: Intraspecific and interspecific recognition, in: Coelenterate Ecology and Behavior (G. O. Mackie, ed.), pp. 127–136, Plenum Press, New York.Google Scholar
  4. Bigger, C. H., 1980, Interspecific and intraspecific acrorhagial aggressive behavior among sea anemones, a recognition of self and not-self, Biol. Bull. 159:117.CrossRefGoogle Scholar
  5. Bigger, C. H., and Runyan, R., 1979, An in situ demonstration of self-recognition in gorgonians, Dev. Comp. Immunol. 3:591.PubMedCrossRefGoogle Scholar
  6. Bizot, M., 1971, Hemagglutinin from the snail Eobania vermiculata, Vox Sang. 21:465.CrossRefGoogle Scholar
  7. Bonnin, J. P., 1964, Recherches sur la “réaction d’agression” et sur le fonctionnement des acrorrhages d’Actinia equina L., Bull. Biol. Fr. Belg. 98:225.Google Scholar
  8. Brien, P., 1951, Contribution a l’étude des hydres d’eau douce, Bull. Soc. Zool. Fr. 76:277.Google Scholar
  9. Buehrer, M. and Tardent, P., 1980, Compatibilities and incompatibilities in Podocoryne carnea (anthomedusae), in: Developmental and Cellular Biology of Coelenterates (P. Tardent and R. Tardent, eds.), pp. 477–480, Else vier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  10. Buisson, B., 1970, Les supports morphologiques de l’intégration dans la colonie de Veretillum cynamorium Pall. (Cnidaria, Pennatularia), Z. Morphol. Tiere 68:1.Google Scholar
  11. Burkholder, P. R., 1973, The ecology of marine antibiotics and coral reefs, in: Biology and Geology of Coral Reefs, Volume II, Biology 1 (O. A. Jones and R. Endean, eds.), pp. 117–182, Academic Press, New York.CrossRefGoogle Scholar
  12. Burkholder, P. R., and Burkholder, L. M., 1958, Antimicrobial activity of horny corals, Science 127:1174.PubMedCrossRefGoogle Scholar
  13. Campbell, R. D., and Bibb, C., 1970, Transplantation in coelenterates, Transplant. Proc. 2:202.PubMedGoogle Scholar
  14. Chapman, D., 1974, Cnidarian histology, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenhoff, eds.), pp. 2–92, Academic Press, New York.Google Scholar
  15. Chapman, G., 1974, The skeletal system, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenhoff, eds.), pp. 93–128, Academic Press, New York.Google Scholar
  16. Cheney, D. P., 1975, Hard tissue tumors of scleractinian corals, in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 77–87, Plenum Press, New York.Google Scholar
  17. Ciereszko, L. S., 1962, Chemistry of coelenterates. III. Occurence of antimicrobial terpenoid compounds in the zooxanthellae of alcyonarians, Trans. N.Y. Acad. Sci. See. II 24:502.CrossRefGoogle Scholar
  18. Conklin, E., and Mariscal, R. N., 1977, Feeding behavior, ceras structure, and nematocyst storage in the aeolid nudibranch, Spurilla neapolitana (Mollusca), Bull. Mar. Sci. 27:658.Google Scholar
  19. Conklin, E., Bigger, C. H., and Mariscal, R. N., 1977, The formation and taxonomic status of the microbasic q-mastigophore nematocyst of sea anemones, Biol. Bull. 152:159.CrossRefGoogle Scholar
  20. Connell, J. H., 1973, Population ecology of reef-building corals, in: Biology and Geology of Coral Reefs, Volume II, Biology 1 (O. A. Jones and R. Endean, eds.), pp. 205–245, Academic Press, New York.CrossRefGoogle Scholar
  21. Connell, J. H., 1976, Competitive interactions and the species diversity of corals in: Coelenterate Ecology and Behavior (G. O. Mackie, ed.), pp. 51–58, Plenum Press, New York.Google Scholar
  22. Cooper, E. L., and Aponte, A., 1968, Chronic allograft rejection in the iguana Ctenosaura pectinata, Proc. Soc. Exp. Biol. Med. 128:150.Google Scholar
  23. Crowell, S., 1950, Individual specificity in the fusion of hydroid stolons and the relationship between stolonic growth and colony growth, Anat. Rec. 108:560.Google Scholar
  24. David, C. N., and Campbell, R. D., 1972, Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells, J. Cell Sci. 11:557.PubMedGoogle Scholar
  25. David, C. N., and Challoner, D., 1974, Distribution of interstitial cells and differentiating nematocysts in nests in Hydra attenuata, Am. Zool. 14:537.Google Scholar
  26. David, C. N., and Gierer, A., 1974, Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation, J. Cell Sci. 16:359.PubMedGoogle Scholar
  27. Diehl, F., and Burnett, A. L., 1969, The role of interstitial cells in the maintenance of hydra. IV. Migration of interstitial cells in homografts and heterografts, J. Exp. Zool. 163:125.CrossRefGoogle Scholar
  28. Du Pasquier, L., 1974, The genetic control of histocompatibility reactions: Phylogenetic aspects, Arch. Biol. 85:91.Google Scholar
  29. Evans, E. E., Weinheimer, P. F., Painter, B., Acton, R. T., and Evans, M. L., 1969, Secondary and tertiary responses of the induced bactericidin from the West Indian spiny lobster, Panulirus argus, J. Bacteriol. 98:943.Google Scholar
  30. Francis, L., 1973, Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemones, Biol. Bull. 144:73.CrossRefGoogle Scholar
  31. Hauenschild, C., 1954, Genetische und Entwicklung-physiologische Untersuchungen über Intersexualität und Gewebeverträglichkeit bei Hydractinia echinata Flemm. (Hydrox. Bougainvill.), Wilhelm Roux Arch. Entwicklungsmech. Org. 147:1.CrossRefGoogle Scholar
  32. Hauenschild, C., 1956, Über die Vererbung einer Gewebeverträglichkeits—Eigenschaft bei dem Hydroidpolypen Hydractinia echinata, Z. Naturforsch. 11:132.Google Scholar
  33. Hildemann, W. H., and Thoenes, G. H., 1969, Immunological responses of Pacific hagfish. I. Skin transplantation immunity, Transplantation 7:506.PubMedCrossRefGoogle Scholar
  34. Hildemann, W. H., Dix, T. G., and Collins, J. D., 1974, Tissue transplantation in diverse marine invertebrates, in: Contemporary Topics in Immunobiology, Vol. 4 (E. L. Cooper, ed.), pp. 141–150, Plenum Press, New York.CrossRefGoogle Scholar
  35. Hildemann, W. H., Linthicum, D. S., and Vann, D. C., 1975a, Immunoincompatibility reactions in corals (Coelenterata), in: Immunologie Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 105–114, Plenum Press, New York.Google Scholar
  36. Hildemann, W. H., Linthicum, D. S., and Vann, D. C., 1975b, Transplantation and immunoincompatibility reactions among reef-building corals, Immunogenetics 2:269.CrossRefGoogle Scholar
  37. Hildemann, W. H., Raison, R. L., Hull, C. J., Akaka, L., Okamoto, J., and Cheung, G., 1977a, Tissue transplantation immunity in corals, in: Proceedings, Third International Coral Reef Symposium, Vol. I (D. L. Taylor, ed.), pp. 537–544, Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
  38. Hildemann, W. H., Raison, R. L., Cheung, G., Hull, C. J., Akaka, L., and Okamoto, J., 1977b, Immunological specificity and memory in a scleractinian coral, Nature (London) 270:219.CrossRefGoogle Scholar
  39. Hildemann, W. H., Bigger, C. H., and Johnston, I. S., 1979, Histoincompatibility reactions and allogeneic polymorphism among invertebrates, Transplant. Troc. 11:1136.Google Scholar
  40. Hildemann, W. H., Bigger, C. H., Jokiel, P. L., and Johnston, I. S., 1980a, Characteristics of immune memory in invertebrates, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 9–14, Elsevier/North-Holland, Amsterdam.Google Scholar
  41. Hildemann, W. H., Jokiel, P. L., Bigger, C. H., and Johnston, I. S., 1980b, Allogeneic polymorphism and alloimmune memory in the coral, Montipora verrucosa, Transplantation 30:297.CrossRefGoogle Scholar
  42. Issayev, W., 1924, Researches on animal chimeras, J. Genet. 14:273.CrossRefGoogle Scholar
  43. Ivker, F. B., 1972, A hierarchy of histo-incompatibility in Hydractinia echinata, Biol. Bull. 143:162.CrossRefGoogle Scholar
  44. Johnston, I. S., Jokiel, P. L., Bigger, C. H., and Hildemann, W. H., 1981, The influence of temperature on the kinetics of allograft reactions in a tropical sponge and a reef coral, Biol. Bull. 160:280.CrossRefGoogle Scholar
  45. Kanaev, I. I., 1969, Hydra, in: Essays on the Biology of Fresh Water Polyps (H. M. Lenhoff, editor of original Russian text), privately printed and circulated.Google Scholar
  46. Kato, M., Hirai, E., and Kakinuma, Y., 1963, Further experiments on the interspecific relation in the colony formation among some hydrozoan species, Sci. Rep. Tohoku Univ. Ser. 4 29:317.Google Scholar
  47. Kato, M., Hirai, E., and Kakinuma, Y., 1967, Experiments on the coaction among hydrozoan species in the colony formation, Sci. Rep. Tohoku Univ. Ser. 4 33:359.Google Scholar
  48. Kolenkine, X., 1958a, Les modalités de l’association tissulaire après hétéro-greffe entre Hydra attenuata et Pelmatohydra oligactis, C.R. Acad. Sci. Ser. D 246:1605.Google Scholar
  49. Kolenkine, X., 1958b, Evolution des hydres chimères obtenues après hétéro-greff entre Hydra attenuata et Pelmatohydra oligactis, C.R. Acad. Sci. Ser. D 246:1748.Google Scholar
  50. Lang, J., 1971, Interspecific aggression by scleractinian corals. 1. The rediscovery of Scolymia cubensis (Milne Edwards & Haime), Bull. Mar. Sci. 21:952.Google Scholar
  51. Lang, J., 1973, Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift, Bull. Mar. Sci. 23:260.Google Scholar
  52. Lewis, J. B., and Price, W. S., 1975, Feeding mechanisms and feeding strategies of Atlantic reef corals, J. Zool. 176:527.CrossRefGoogle Scholar
  53. Manning, M. J., and Turner, R. J., 1976, Comparative Immunobiology, Wiley, New York.Google Scholar
  54. Marcum, B. A., and Campbell, R. D., 1978, Development of hydra lacking nerve and interstitial cells, J. Cell Sci. 29:17.PubMedGoogle Scholar
  55. Mariscal, R. N., 1970, A field and laboratory study of the symbiotic behavior of fishes and sea anemones from the tropical Indo-Pacific, Univ. Calif. Berkeley Publ. Zool. 91:1.Google Scholar
  56. Mariscal, R. N., 1974, Nematocysts, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenhoff, eds.), pp. 129–178, Academic Press, New York.Google Scholar
  57. Mariscal, R. N., and Bigger, C. H., 1977, Possible ecological significance of octocoral epithelial ultrastructure, in: Proceedings, Third International Coral Reef Symposium, Vol. I (D. L. Taylor, ed.), pp. 127–133, Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
  58. McNeil, P. L., 1981, Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscope study, J. Cell Sci. 49:311.PubMedGoogle Scholar
  59. McNeil, P. L., Hohman, T., and Muscatine, L., 1981, Mechanisms of nutritive endocytosis. II. The effect of changed agents on phagocytic recognition by digestive cells, J. Cell Sci. 52:243.PubMedGoogle Scholar
  60. Metchnikoff, E., 1892, Leçons sur la Pathologie Comparée de l’Inflammation, Masson, Paris; reissued (1968) in English as Lectures on the Comparative Pathology of Inflammation, Dover, New York.Google Scholar
  61. Morse, D. E., Morse, A. N. C., and Duncan, H., 1977, Algal ‘‘tumors’7 in the Caribbean sea-fan, Gorgonia ventalina, in: Proceedings, Third International Coral Reef Symposium, Vol. I (D. L. Taylor, ed.), pp. 623–629, Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
  62. Müller, W., 1964, Experimentelle Untersuchungen über Stockentwicklung, Polypendifferenzierung und sexual Chimären bei Hydractinia echinata, Wilhelm Roux Arch. Entwicklungsmech. Org. 155:181.CrossRefGoogle Scholar
  63. Muscatine, L., 1974, Endosymbiosis of cnidarians and algae, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenhoff, eds.), pp. 359–395, Academic Press, New York.Google Scholar
  64. Muscatine, L., Pool, R. R., and Trench, R. R., 1975, Symbiosis of algae and invertebrates: Aspects of the symbiont surface and the host-symbiont interface, Trans. Am. Microsc. Soc. 94:450.PubMedCrossRefGoogle Scholar
  65. Patterson, M. J., and Landolt, M. L., 1979, Cellular reaction to injury in the anthozoan Anthopleura elegantissima, J. Invert. Pathol. 33:189.CrossRefGoogle Scholar
  66. Phillips, J. H., 1960, Antibodylike materials of marine invertebrates, Ann. N.Y. Acad. Sci. 90:760.CrossRefGoogle Scholar
  67. Phillips, J. H., 1963, Immune mechanisms in the phylum Coelenterate, in: The Lower Metazoa (E. C. Dougherty, Z. N. Brown, E. D. Hanson, and W. D. Hartman, eds.), pp. 425–431, University of California Press, Berkeley.Google Scholar
  68. Pool, R. R., 1979, The role of algal antigenic determinants in the recognition of potential algal symbionts by cells of Chlorohydra, J. Cell Sci. 35:367.Google Scholar
  69. Pool, R. R., and Muscatine, L., 1980, Phagocytic recognition and the establishment of the Hydra viridis-Chlorella symbiosis, in: Endosymbiosis and Cell Biology, Vol. I. (W. Schwemmler and H. E. A. Schenk, eds.), pp. 223–238, Walter de Gruyter & Co., Berlin.Google Scholar
  70. Prazdnikov, E. V., and Mikhailova, I. G., 1962, A note on the problem of the character of the early inflammatory reaction in some coelenterates (Staurophora mertensii Brandt, 1935, Aurelia aurita L., Beroe cucumis Fabr.), Tr. Murm. Morsk. Biol. Inst. 4:221.Google Scholar
  71. Purcell, J. E., 1977, Aggressive function and induced development of catch tentacles in the sea anemone Metridium senile (Coelenterate, Actinaria), Biol. Bull. 153:355.CrossRefGoogle Scholar
  72. Raison, R. L., Hull, C. J., and Hildemann, W. H., 1976, Allogeneic graft rejection in Montipora verrucosa, a reef-building coral, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 3–8, Elsevier/North-Holland, Amsterdam.Google Scholar
  73. Robson, E. A., 1957, The structure and hydromechanics of the musculoepithelium in Metridium, Q. J. Microsc. Sci. 98:256.Google Scholar
  74. Russell-Hunter, W. D., 1969, A Biology of Higher Invertebrates, Collier-Macmillan London.Google Scholar
  75. Schoenberg, D. A., and Trench, R. K., 1976, Specificity of symbiosis between marine cnidarians and zooxanthellae, in: Coelenterate Ecology and Behavior (G. O. Mackie, ed.), pp. 423–432, Plenum Press, New York.Google Scholar
  76. Serre, A., and Theodor, J., 1967, Mise en évidence d’unne reconnaissance immunologique de tissus chez un Invertébré, C.R. Acad. Sci. Ser. D 264:513.Google Scholar
  77. Singer, I., 1971, Tentacular and oral-disc regeneration in the sea anemone, Aiptasia diaphana. III. Autoradiographic analysis of patterns of tritiated thymidine uptake, J. Embryol. Exp. Morphol. 26:253.PubMedGoogle Scholar
  78. Sparks, A. K., 1972, Invertebrate Pathology, Academic Press, New York.Google Scholar
  79. Stanton, G., 1977, Habitat partitioning among associated decapods with Lebrunia danae at Grand Bahama, in: Proceedings, Third International Coral Reef Symposium, Vol. I (D. L. Taylor, ed.) pp. 169–176, Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
  80. Tardent, P., 1963, Regeneration in the Hydrozoa, Biol. Rev. 38:293.CrossRefGoogle Scholar
  81. Tardent, P., and Tardent, R., 1980, “Developmental and Cellular Biology of Coelenterates” Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  82. Theodor, J., 1966, Contribution à l’étude des Gorgones (V) Les greffes chez les Gorgones: Etude d’un système de reconnaissance de tissus, Bull. Inst. Oceanogr. 66(1374):1.Google Scholar
  83. Theodor, J., 1969, Histotoxicité in vivo et in vitro entre tissus xénogéniques et entre tissus allogéniques chez un Invertébré, C.R. Acad. Sci. Ser. D 268:2534.Google Scholar
  84. Theodor, J., 1970, Distinction between “self and “not-self” in lower invertebrates, Nature (London) 227:690.CrossRefGoogle Scholar
  85. Theodor, J., 1976, Histo-incompatibility in a natural population of gorgonians, Zool. J. Linn. Soc. 58:173.CrossRefGoogle Scholar
  86. Theodor, J., and Carrière, J., 1975, Direct evidence of heterolysis of gorgonian target cells, in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 101–103, Plenum Press, New York.Google Scholar
  87. Theodor, J., and Senelar, R., 1975, Cytotoxic interaction between gorgonian explants: Mode of action, Cell. Immunol. 19:194.PubMedCrossRefGoogle Scholar
  88. Tokin, B. P., and Yericheva, F. N., 1959, Phagocytic characteristics of cells of Hydra oligactis Poll., Nauchn. Dokl. Vyssh. Shk. Biol. Nauki 2:43.Google Scholar
  89. Tokin, B. P., and Yericheva, F. N., 1961, Phagocytai reaction in the course of regeneration and somatic embryogenesis in lower coelenterates, Tr. Murm. Morsk. Biol. Inst. 3:182.Google Scholar
  90. Toth, S. E., 1967, Tissue compatibility in regenerating expiants from the colonial marine hydroid Hydractinia echinata (Flem.), J. Cell. Physiol. 69:125.PubMedCrossRefGoogle Scholar
  91. Trembley, A., 1744, Mémoires pour servir a l’histoire d’un genre de polypes d’eau douce a bras en forme de comes, Leyden.Google Scholar
  92. Trench, R. K., 1979, The cell biology of plant-animal symbiosis, Annu. Rev. Plant Physiol. 30:485.CrossRefGoogle Scholar
  93. Van-Praet, M., and Doumenc, D., 1974, Morphologie et morphogenèse expérimentale du tentacule chez Actinia equina L., J. Microsc. Biol. Cell. 23:29.Google Scholar
  94. Westfall, J. A., 1966, The differentiation of nematocysts and associated structures in the Cnidaria, Z. Zellforsch. Mikrosk. Anat. 75:381.CrossRefGoogle Scholar
  95. Young, J. A. C., 1974, The nature of tissue regeneration after wounding in the sea anemone Calliactis parasitica (Couch), J. Mar. Biol. Assoc. U.K. 54:599.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Charles H. Bigger
    • 1
  • William H. Hildemann
    • 1
  1. 1.Immunogenetics Group, School of Medicine and Dental Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations