Skip to main content

Cellular Defense Systems of the Porifera

  • Chapter
Phylogeny and Ontogeny

Abstract

Sponges are diploblastic acoelomate Metazoa. They are sedentary, filter-feeding animals which utilize a layer of flagellated cells to pump a unidirectional water current through themselves. They are found in freshwater, but more abundantly in marine habitats. Sponges have been persistent throughout geological time from the Precambrian to the Recent, with special success during the Paleozoic. They are apparently the most primitive multicellular animals on a phylogenetic scale ranked by morphological complexity, although the levels of physiological and biochemical complexity found in sponges easily measure up to the degree of sophistication found in so-called higher animals. The Porifera (sponges) and Coelenterata are related as two phyla representing distinct stocks, but stemming from a presumed common although presently unknown origin (Hyman, 1940).

Research work and manuscript preparation supported by National Institutes of Health Grant AI 15705.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagby, R. M., 1970, The fine structure of pinacocytes in the marine sponge Microciona prolifera, Z. Zellforsch. Mikrosk. Anat. 105:579.

    Article  CAS  Google Scholar 

  • Bakus, G. J., and Green, G., 1974, Toxicity in sponges and holothurians: A geographical pattern, Science 185:951.

    Article  PubMed  CAS  Google Scholar 

  • Bergquist, P. R., 1978, Sponges, University of California Press, Berkeley.

    Google Scholar 

  • Bigger, C. H., Hildemann, W. H., Jokiel, P. L., and Johnston, I. S., 1981, Afferent sensitization and efferent cytotoxicity in allogeneic tissue responses of the marine sponge Callyspongia diffusa, Transplantation 31:461.

    Article  CAS  Google Scholar 

  • Borojevic, R., 1967, La ponte et le développement de Polystomia robusta (Demosponges), Cah. Biol. Mar. 7:1.

    Google Scholar 

  • Boury-Esnault, N., 1977, A cell type in sponges involved in the metabolism of glycogen, Cell Tissue Res. 175:523.

    Article  PubMed  CAS  Google Scholar 

  • Bretting, H., and Kabat, E. A., 1976, Purification and characterization of the agglutinins from the sponge Axinella polypoides and a study of their binding sites, Biochemistry 15:3228.

    Article  PubMed  CAS  Google Scholar 

  • Bretting, H., and Konigsmann, K., 1979, Investigations on the lectin-producing cells in the sponge Axinella polypoides (Schmidt), Cell Tissue Res. 201:487.

    Article  PubMed  CAS  Google Scholar 

  • Brill, B., 1973, Ultrastructure of choanocytes in Ephydatia fluviatilis, Z. Zellforsch. Mikrosk. Anat. 144:231.

    Article  Google Scholar 

  • Burger, M. M., Turner, R. S., Kuhns, W. J., and Weinbaum, G., 1975, A possible model for cell-cell recognition via surface macromolecules, Philos. Trans. R. Soc. London Ser. B 271:379.

    Article  CAS  Google Scholar 

  • Burger, M. M., Burkart, W., Weinbaum, G., and Jumblatt, J., 1978, Cell-cell recognition: Molecular aspects, recognition and its relation to morphogenetic processes in general, Symp. Soc. Exp. Biol. 32:1.

    PubMed  CAS  Google Scholar 

  • Burkart, W., and Burger, M. M., 1977, Studies on cell populations from Microciona proliféra separated by Ficoll gradients, Biol. Bull. 153:417.

    Google Scholar 

  • Burkholder, P. R., 1973, The ecology of marine antibiotics and coral reefs, in: Biology and Geology of Coral Reefs, Volume II, Biology 1 (O. A. Jones and R. Endean, eds.), pp. 117–182, Academic Press, New York.

    Chapter  Google Scholar 

  • Cheng, T. C., Yee, H. W. F., and Rifkin, E., 1968a, Studies on the internal defense mechanisms of sponges, I. The cell types occurring in the mesogloea of Terpios zeteki (de Laubenfels) (Porifera: Demospongiae), Pac. Sci. 22:395.

    Google Scholar 

  • Cheng, T. C., Rifkin, E., and Yee, H. W. F., 1968b, Studies on the internal defense mechanisms of sponges. II. Phagocytosis and elimination of Indian ink and carmine particles by certain parenchymal cells of Terpios zeteki, J. Invert. Pathol. 11:302.

    Article  Google Scholar 

  • Cheng, T. C., Yee, H. W. F., Rifkin, E., and Kramer, M. D., 1968c, Studies on the internal defense mechanisms of sponges. III. Cellular reaction in Terpios zeteki to implanted heterologous biological materials, J. Invert. Pathol. 12:29.

    Article  Google Scholar 

  • Cohen, E. (ed.), 1974, Biomedical Perspectives of Agglutinins of Invertebrate and Plant Origins, Ann. N.Y. Acad. Sci. 234.

    Google Scholar 

  • Connes, R., 1966, Aspects morphologiques de la régénération de Tethya lyncurium Lamark, Bull. Soc. Zool. Fr. 91:43.

    Google Scholar 

  • Connes, R., 1967, Reactions de défense de l’éponge Tethya lyncurium Lamark, vis-à-vis des microorganismes et de l’amphipode Leucothoe spinicarpa Abildg., Vie Milieu Ser. A 18:281.

    Google Scholar 

  • Curtis, A. S. G., 1969, The measurement of cell adhesiveness by an absolute method, J. Embryol. Exp Morphol. 22:305.

    PubMed  CAS  Google Scholar 

  • Curtis, A. S. G., 1974, The specific control of cell positioning, Arch. Biol. 85:105.

    CAS  Google Scholar 

  • Curtis, A. S. G., 1978, Cell-cell recognition: Positioning and patterning systems, Symp. Soc. Exp. Biol. 32:51.

    PubMed  CAS  Google Scholar 

  • Curtis, A. S. G., 1979a, Individuality and graft rejection in sponges, or, a cellular basis for individuality in sponges, Syst. Assoc. Spec. Vol. 11:39.

    Google Scholar 

  • Curtis, A. S. G., 1979b, Recognition by sponge cells, Colloq. Int. CNRS 291:205.

    Google Scholar 

  • Curtis, A. S. G., 1979c, Histocompatibility systems, recognition and cell positioning, Dev. Comp. Immunol. 3:379.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, A. S. G., and Van de Vyver, G., 1971, The control of cell adhesion in a morphogenetic system, J. Embryol. Exp. Morphol. 26:295.

    PubMed  CAS  Google Scholar 

  • Dayton, P. K., Robilliard, G. A., Paine, R. T., and Dayton, L. B., 1974, Biological accommodation in the benthic community at McMurdo Sound, Antarctica, Ecol. Monogr. 44:105.

    Article  Google Scholar 

  • DeSutter, D., and Van de Vyver, G., 1977, Aggregative properties of different cell types of the fresh water sponge Ephydatia fluviatilis isolated on Ficoll gradients, Wilhelm Roux Arch. Entwicklungsmech. Org. 181:151.

    Article  Google Scholar 

  • DeSutter, D., and Van de Vyver, G., 1979, Isolation and recognition properties of some definite sponge cell types, Dev. Comp. Immunol. 3:389.

    Article  CAS  Google Scholar 

  • Donadey, C., and Vacelet, J., 1977, Les cellules a inclusions de l’éponge Pleraplysilla spinifera (Schulze) (Demosponges: Dendroceratides), Arch. Zool. Exp. Gen. 118:273.

    Google Scholar 

  • Du Pasquier, L., 1974, The genetic control of histocompatibility reactions: Phylogenetic aspects, Arch. Biol. 85:91.

    Google Scholar 

  • Egami, N., and Ishii, S., 1956, Differentiation of sex cells in united heterosexual halves of the sponge Tethya serica, Annot. Zool. Jpn. 29:199.

    Google Scholar 

  • Evans, C. W., and Bergquist, P. R., 1974, Initial cell contact in sponge aggregates, J. Microsc. (Paris) 21:185.

    Google Scholar 

  • Evans, C. W., and Curtis, A. S. G., 1979, Graft rejection in sponges: Its relation to cell aggregation studies, Colloa. Int. CNRS 291:211.

    Google Scholar 

  • Evans, C. W., Kerr, J., and Curtis, A. S. G., 1980, Graft rejection and immune memory in marine sponges, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 27–34, Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Faulkner, D. J., 1977, Interesting aspects of marine natural products chemistry, Tetrahedron 33:1421.

    Article  CAS  Google Scholar 

  • Galtsoff, P. S., 1929, Heteroagglutination of dissociated sponge cells, Biol. Bull. 57:250.

    Article  Google Scholar 

  • Galtsoff, P. S., Brown, H. H., Smith, C. L., and Walton-Smith, F. G., 1939, Sponge mortality in the Bahamas, Nature (London) 143:807.

    Article  Google Scholar 

  • Garrone, R., and Pottu, J., 1973, Collagen biosynthesis in sponges: Elaboration of spongin by spongocytes, J. Submicrosc. Cytol. 5:199.

    CAS  Google Scholar 

  • Harrison, F. W., 1972, The nature and role of the basal pinacoderm of Corvomeyenia carolinensis: A histochemical and developmental study, Hydrobiologia 39:495.

    Article  Google Scholar 

  • Hildemann, W. H., 1977, Specific immunorecognition by histocompatibility markers: The original polymorphic system of immunoreactivity characteristic of all multicellular animals, Immunogenetics 5:193.

    Article  Google Scholar 

  • Hildemann, W. H., Johnston, I. S., and Jokiel, P. L., 1979, Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges, Science 204:420.

    Article  PubMed  CAS  Google Scholar 

  • Hildemann, W. H., Bigger, C. H., Jokiel, P. L., and Johnston, I. S., 1980a, Characteristics of immune memory in invertebrates, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 9–14, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Hildemann, W. H., Bigger, C. H., Johnston, I. S., and Jokiel, P. L., 1980b, Characteristics of transplantation immunity in the sponge, Callyspongia diffusa, Transplantation 30:362.

    Article  CAS  Google Scholar 

  • Humphreys, S., Humphreys, T., and Sano, J., 1977, Organization and polysaccharides of sponge aggregation factor, J. Supramol. Struct. 7:339.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, T., 1963, Chemical dissolution and in vitro reconstruction of sponge cell adhesion. I. Isolation and functional demonstration of components involved, Dev. Biol. 8:27.

    Article  CAS  Google Scholar 

  • Hyman, L. H., 1940, The Invertebrates, Volume 1, Protozoa through Ctenophora, McGraw-Hill, New York.

    Google Scholar 

  • Jackson, J. B. C., and Buss, L., 1975, Allelopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci. USA 72:5160.

    Article  PubMed  CAS  Google Scholar 

  • Jakowska, S., and Nigrelli, R. F., 1960, Antimicrobial substances from sponges, Ann. N.Y. Acad. Sci. 90:913.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, I. S., Jokiel, P. L., Bigger, C. H., and Hildemann, W. H., 1981, The influence of temperature on the kinetics of allograft reactions in a tropical sponge and a reef coral, Biol. Bull. 160:280.

    Article  Google Scholar 

  • Johnston, I. S., and Hildemann, W. H., 1982, Cellular organization in the marine demosponge Callyspongia diffusa, Mar. Biol. 67:1.

    Article  Google Scholar 

  • Kartha, S., and Mookerjee, S., 1979, Cell contact in aggregating sponge cells: An ultrastructural study, Mikroskopie 35:213.

    PubMed  CAS  Google Scholar 

  • Lauckner, G., 1980, Diseases of Porifera, in: Diseases of Marine Animals, Vol. 1, General Aspects, Protozoa to Gastropoda (O. Kinne, ed.), pp. 139–165, John Wiley & Sons, Chichester.

    Google Scholar 

  • Leith, A., 1979, Role of aggregation factor and cell type in sponge cell adhesion, Biol. Bull. 156:212.

    Article  PubMed  CAS  Google Scholar 

  • Levi, C., 1970, Sponge cells, Symp. Zool. Soc. London 25:353.

    Google Scholar 

  • Litchfield, J. T., 1949, A method for rapid graphic solution of time-per cent effect curves, J. Pharmacol. Exp. Ther. 97:399.

    PubMed  Google Scholar 

  • MacLennan, A. P., 1970, Polysaccharides from sponges and their possible significance in cellular aggregation, Symp. Zool. Soc. London 25:299.

    Google Scholar 

  • MacLennan, A. P., 1974, The chemical basis for taxon-specific cellular reaggregation and self-not-self recognition in sponges, Arch. Biol. 85:53.

    CAS  Google Scholar 

  • MacLennan, A. P., and Dodd, R. Y., 1967, Promoting activity of extracellular materials on sponge cell reaggregation, J. Embryol. Exp. Morphol. 17:473.

    PubMed  CAS  Google Scholar 

  • McClay, D. R., 1974, Cell aggregation properties of cell surface factors from five species of sponge, J. Exp. Zool. 188:89.

    Article  PubMed  CAS  Google Scholar 

  • Mclntyre, D. E., Faulkner, D. J., Van Engen, D., and Clardy, J., 1979, Renierone, an antimicrobial metabolite from a marine sponge, Tetrahedron Lett. 43:4163.

    Article  Google Scholar 

  • Moscona, A. A., 1968, Cell aggregation: Properties of specific cell-ligands and their role in the formulation of multicellular systems, Dev. Biol. 18:250.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. H., 1970, The role of allelopathy in the evolution of vegetation, in: Biochemical Coevolution (K. L. Chambers, ed.), pp. 13–31, Oregon State University Press, Corvallis.

    Google Scholar 

  • Müller, W. E. G., and Zahn, R. K., 1973, Purification and characterization of a species-specific aggregation factor in sponges, Exp. Cell Res. 80:95.

    Article  PubMed  Google Scholar 

  • Müller, W. E. G., Müller, I., Kurelec, B.and Zahn, R. K., 1976a, Species specific aggregation factor in sponges. IV. Inactivation of the aggregation factor by mucoid cells from another species, Exp. Cell Res. 98:31.

    Article  PubMed  Google Scholar 

  • Müller, W. E. G., Müller, I., Zahn, R. K., and Kurelec, B., 1976b, Species-specific aggregation factor in sponges, VI. Aggregation receptor from the cell surface, J. Cell Sci. 21:227.

    PubMed  Google Scholar 

  • Müller, W. E. G., Müller, I., and Zahn, R. K., 1978a, Aggregation in sponges, Res. Mol. Biol. (Akad. Wiss. Lit.) 8:1.

    Google Scholar 

  • Müller, W. E. G., Zahn, R. K., Kurelec, B., Uhlenbruck. G., Vaith, P., and Müller, I., 1978b, Aggregation of sponge cells. XVIII. Glycosyltransferases associated with the aggregation factor, Hoppe-Seyler’s Z. Physiol. Chem. 359:529.

    Article  Google Scholar 

  • Müller, W. E. G., Zahn, R. K., Kurelec, B., Müller, I., Vaith, P., and Uhlenbruck, G., 1979a, Aggregation of sponge cells: Isolation and characterization of an inhibitor of aggregation receptor from the cell surface, Eur. J. Biochem. 97:585.

    Article  PubMed  Google Scholar 

  • Müller, W. E. G., Kurelec, B., Zahn, R. K., Müller, I., Vaith, P., and Uhlenbruck, G., 1979b, Aggregation of sponge cells: Function of a lectin in its homologous biological system, J. Biol. Chem. 254:7479.

    PubMed  Google Scholar 

  • Muscatine, L., Karakashian, S. J., and Karakashian, M. W., 1967, Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant hydra, Comp. Biochem. Physiol. 20:1.

    Article  CAS  Google Scholar 

  • Paris, J., 1961, Greffes et sérologie chez les éponges silicieuses, Vie Milieu Ser. A Suppl. 11:1.

    Google Scholar 

  • Parish, C. R., 1977, Simple model for self-non-self discrimination in invertebrates, Nature (London) 267:711.

    Article  CAS  Google Scholar 

  • Pavans de Ceccatty, M., and Garrone, R., 1971, Fibrogenèse du collagène chez l’éponge Chondrosia reniformis Nardo (démosponge, tétractinellide): Origine et évolution des lophocytes, C.R. Acad. Sci. Ser. D 273:1957.

    Google Scholar 

  • Randall, J. E., and Hartman, W. D., 1968, Sponge-feeding fishes of the West Indies, Mar. Biol. 1:216.

    Article  Google Scholar 

  • Reiswig, H. M., 1971a, In situ pumping activities of tropical Demospongiae, Mar. Biol. 9:38.

    Article  Google Scholar 

  • Reiswig, H. M., 1971b, Particle feeding in natural populations of three marine demosponges, Biol. Bull. 141:568.

    Article  Google Scholar 

  • Rothenberg, B. E., 1978, The self recognition concept: An active function for the molecules of the histocompatibility complex based on the complementary interaction of protein and carbohydrate, Dev. Comp. Immunol. 2:23.

    Article  PubMed  CAS  Google Scholar 

  • Rützler, K., 1970, Spatial competition among Porifera: Solution by epizoism, Oecologia (Berlin) 5:85.

    Article  Google Scholar 

  • Sara, M., 1968, Bispecific cell aggregation of the sponges Haliclona elegans and Tethya citrina, Acta Embryol. Morphol. Exp. 10:228.

    Google Scholar 

  • Sara, M., 1970, Competition and cooperation in sponge populations, Symp. Zool. Soc. London 25:273.

    Google Scholar 

  • Sara, M., and Vacelet, J., 1973, Ecologie des demosponges, in: Traité de Zoologie, Anatomie, Systematique, Biologie: Spongiares (P. P. Grasse, ed.), pp. 462–576, Masson, Paris.

    Google Scholar 

  • Simpson, T. L., 1973, Coloniality among the Porifera, in: Animal Colonies (R. S. Boardman, A. H. Cheetham, and W. A. Oliver, eds.), pp. 549–565, Dowden, Hutchinson and Ross, Stroudsburg.

    Google Scholar 

  • Simpson, T. L., and Vaccaro, C. A., 1974, An ultrastructural study of silica deposition in the freshwater sponge Spongilla lacustris, J. Ultrastruct. Res. 47:296.

    Article  CAS  Google Scholar 

  • Smith, D., Muscatine, L., and Lewis, D., 1969, Carbohydrate movement from autotrophs to hetero-trophs in parasitic and mutualistic symbiosis, Biol. Rev. 44:17.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, M., 1955, The reaggregation of dissociated sponge cells, Ann. N.Y. Acad. Sci. 60:1056.

    Article  PubMed  CAS  Google Scholar 

  • Tuzet, O., and Paris, J., 1964, Réactions tissulaires de l’éponge Suberites domuncula (Olivi) Nardo, vis-à-vis de ses commensaux et parasites, Vie Milieu Ser. A Suppl. 17:147.

    Google Scholar 

  • Tyler, J. C., and Böhlke, J. E., 1972, Records of sponge dwelling fishes, primarily of the Caribbean, Bull. Mar. Sci. 22:601.

    Google Scholar 

  • Vacelet, J., 1975, Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida), J. Microsc. Biol. Cell. 23:271.

    Google Scholar 

  • Vacelet, J., and Donadey, C. J., 1977, Electron microscope study of the association between some sponges and bacteria, J. Exp. Mar. Biol. Ecol. 30:301.

    Article  Google Scholar 

  • Vaith, P., Müller, W. E. G., and Uhlenbruck, G., 1979a, On the role of D-glucuronic acid in the aggregation of cells from the marine sponge Geodia cydonium, Dev. Comp. Immunol. 3:259.

    Article  CAS  Google Scholar 

  • Vaith, P., Uhlenbruck, G., Müller, W. E. G., and Holz, G., 1979b, Sponge aggregation factor and sponge hemagglutinin: Possible relationships between two different molecules, Dev. Comp. Immunol. 3:399.

    Article  PubMed  CAS  Google Scholar 

  • Van de Vyver, G., 1970, La non-confluence intraspécifiques chez les spongiaires et la notion d’individu, Ann. Embryol. Morphog. 3:251.

    Google Scholar 

  • Van de Vyver, G., 1975, Phenomena of cellular recognition in sponges, Curr. Top. Dev. Biol. 10:123.

    Article  PubMed  Google Scholar 

  • Van de Vyver, G., and Buscema, M., 1977, Phagocytic phenomena in different types of freshwater sponge aggregates, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 3–8, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Walton-Smith, F. G., 1941, Sponge disease in British Honduras and its transmission by water currents, Ecology 22:415.

    Article  Google Scholar 

  • Weinbaum, G., and Burger, M. M., 1973, A two component system for surface guided reassociation of animal cells, Nature (London) 244:510.

    Article  CAS  Google Scholar 

  • Wilkinson, C. R., 1978, Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges, Mar. Biol. 49:177.

    Article  Google Scholar 

  • Wilkinson, C. R., 1979, Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges, Arch. Microbiol. 123:101.

    Article  Google Scholar 

  • Wilkinson, C. R., and Fay, P., 1979, Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria, Nature (London) 279:527.

    Article  CAS  Google Scholar 

  • Wilkinson, C. R., and Vacelet, J., 1979, Transplantation of marine sponges to different condition of light and current, J. Exp. Mar. Biol. Ecol. 37:91.

    Article  Google Scholar 

  • Wilson, H. V., 1907, On some phenomena of coalescence and regeneration in sponges, J. Exp. Zool. 5:245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Johnston, I.S., Hildemann, W.H. (1982). Cellular Defense Systems of the Porifera. In: Cohen, N., Sigel, M.M. (eds) Phylogeny and Ontogeny. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4166-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4166-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4168-0

  • Online ISBN: 978-1-4684-4166-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics