Cellular Defense Systems of the Porifera

  • Ian S. Johnston
  • William H. Hildemann


Sponges are diploblastic acoelomate Metazoa. They are sedentary, filter-feeding animals which utilize a layer of flagellated cells to pump a unidirectional water current through themselves. They are found in freshwater, but more abundantly in marine habitats. Sponges have been persistent throughout geological time from the Precambrian to the Recent, with special success during the Paleozoic. They are apparently the most primitive multicellular animals on a phylogenetic scale ranked by morphological complexity, although the levels of physiological and biochemical complexity found in sponges easily measure up to the degree of sophistication found in so-called higher animals. The Porifera (sponges) and Coelenterata are related as two phyla representing distinct stocks, but stemming from a presumed common although presently unknown origin (Hyman, 1940).


Marine Sponge Patch Reef Aggregation Factor Sponge Cell Freshwater Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagby, R. M., 1970, The fine structure of pinacocytes in the marine sponge Microciona prolifera, Z. Zellforsch. Mikrosk. Anat. 105:579.CrossRefGoogle Scholar
  2. Bakus, G. J., and Green, G., 1974, Toxicity in sponges and holothurians: A geographical pattern, Science 185:951.PubMedCrossRefGoogle Scholar
  3. Bergquist, P. R., 1978, Sponges, University of California Press, Berkeley.Google Scholar
  4. Bigger, C. H., Hildemann, W. H., Jokiel, P. L., and Johnston, I. S., 1981, Afferent sensitization and efferent cytotoxicity in allogeneic tissue responses of the marine sponge Callyspongia diffusa, Transplantation 31:461.CrossRefGoogle Scholar
  5. Borojevic, R., 1967, La ponte et le développement de Polystomia robusta (Demosponges), Cah. Biol. Mar. 7:1.Google Scholar
  6. Boury-Esnault, N., 1977, A cell type in sponges involved in the metabolism of glycogen, Cell Tissue Res. 175:523.PubMedCrossRefGoogle Scholar
  7. Bretting, H., and Kabat, E. A., 1976, Purification and characterization of the agglutinins from the sponge Axinella polypoides and a study of their binding sites, Biochemistry 15:3228.PubMedCrossRefGoogle Scholar
  8. Bretting, H., and Konigsmann, K., 1979, Investigations on the lectin-producing cells in the sponge Axinella polypoides (Schmidt), Cell Tissue Res. 201:487.PubMedCrossRefGoogle Scholar
  9. Brill, B., 1973, Ultrastructure of choanocytes in Ephydatia fluviatilis, Z. Zellforsch. Mikrosk. Anat. 144:231.CrossRefGoogle Scholar
  10. Burger, M. M., Turner, R. S., Kuhns, W. J., and Weinbaum, G., 1975, A possible model for cell-cell recognition via surface macromolecules, Philos. Trans. R. Soc. London Ser. B 271:379.CrossRefGoogle Scholar
  11. Burger, M. M., Burkart, W., Weinbaum, G., and Jumblatt, J., 1978, Cell-cell recognition: Molecular aspects, recognition and its relation to morphogenetic processes in general, Symp. Soc. Exp. Biol. 32:1.PubMedGoogle Scholar
  12. Burkart, W., and Burger, M. M., 1977, Studies on cell populations from Microciona proliféra separated by Ficoll gradients, Biol. Bull. 153:417.Google Scholar
  13. Burkholder, P. R., 1973, The ecology of marine antibiotics and coral reefs, in: Biology and Geology of Coral Reefs, Volume II, Biology 1 (O. A. Jones and R. Endean, eds.), pp. 117–182, Academic Press, New York.CrossRefGoogle Scholar
  14. Cheng, T. C., Yee, H. W. F., and Rifkin, E., 1968a, Studies on the internal defense mechanisms of sponges, I. The cell types occurring in the mesogloea of Terpios zeteki (de Laubenfels) (Porifera: Demospongiae), Pac. Sci. 22:395.Google Scholar
  15. Cheng, T. C., Rifkin, E., and Yee, H. W. F., 1968b, Studies on the internal defense mechanisms of sponges. II. Phagocytosis and elimination of Indian ink and carmine particles by certain parenchymal cells of Terpios zeteki, J. Invert. Pathol. 11:302.CrossRefGoogle Scholar
  16. Cheng, T. C., Yee, H. W. F., Rifkin, E., and Kramer, M. D., 1968c, Studies on the internal defense mechanisms of sponges. III. Cellular reaction in Terpios zeteki to implanted heterologous biological materials, J. Invert. Pathol. 12:29.CrossRefGoogle Scholar
  17. Cohen, E. (ed.), 1974, Biomedical Perspectives of Agglutinins of Invertebrate and Plant Origins, Ann. N.Y. Acad. Sci. 234.Google Scholar
  18. Connes, R., 1966, Aspects morphologiques de la régénération de Tethya lyncurium Lamark, Bull. Soc. Zool. Fr. 91:43.Google Scholar
  19. Connes, R., 1967, Reactions de défense de l’éponge Tethya lyncurium Lamark, vis-à-vis des microorganismes et de l’amphipode Leucothoe spinicarpa Abildg., Vie Milieu Ser. A 18:281.Google Scholar
  20. Curtis, A. S. G., 1969, The measurement of cell adhesiveness by an absolute method, J. Embryol. Exp Morphol. 22:305.PubMedGoogle Scholar
  21. Curtis, A. S. G., 1974, The specific control of cell positioning, Arch. Biol. 85:105.Google Scholar
  22. Curtis, A. S. G., 1978, Cell-cell recognition: Positioning and patterning systems, Symp. Soc. Exp. Biol. 32:51.PubMedGoogle Scholar
  23. Curtis, A. S. G., 1979a, Individuality and graft rejection in sponges, or, a cellular basis for individuality in sponges, Syst. Assoc. Spec. Vol. 11:39.Google Scholar
  24. Curtis, A. S. G., 1979b, Recognition by sponge cells, Colloq. Int. CNRS 291:205.Google Scholar
  25. Curtis, A. S. G., 1979c, Histocompatibility systems, recognition and cell positioning, Dev. Comp. Immunol. 3:379.PubMedCrossRefGoogle Scholar
  26. Curtis, A. S. G., and Van de Vyver, G., 1971, The control of cell adhesion in a morphogenetic system, J. Embryol. Exp. Morphol. 26:295.PubMedGoogle Scholar
  27. Dayton, P. K., Robilliard, G. A., Paine, R. T., and Dayton, L. B., 1974, Biological accommodation in the benthic community at McMurdo Sound, Antarctica, Ecol. Monogr. 44:105.CrossRefGoogle Scholar
  28. DeSutter, D., and Van de Vyver, G., 1977, Aggregative properties of different cell types of the fresh water sponge Ephydatia fluviatilis isolated on Ficoll gradients, Wilhelm Roux Arch. Entwicklungsmech. Org. 181:151.CrossRefGoogle Scholar
  29. DeSutter, D., and Van de Vyver, G., 1979, Isolation and recognition properties of some definite sponge cell types, Dev. Comp. Immunol. 3:389.CrossRefGoogle Scholar
  30. Donadey, C., and Vacelet, J., 1977, Les cellules a inclusions de l’éponge Pleraplysilla spinifera (Schulze) (Demosponges: Dendroceratides), Arch. Zool. Exp. Gen. 118:273.Google Scholar
  31. Du Pasquier, L., 1974, The genetic control of histocompatibility reactions: Phylogenetic aspects, Arch. Biol. 85:91.Google Scholar
  32. Egami, N., and Ishii, S., 1956, Differentiation of sex cells in united heterosexual halves of the sponge Tethya serica, Annot. Zool. Jpn. 29:199.Google Scholar
  33. Evans, C. W., and Bergquist, P. R., 1974, Initial cell contact in sponge aggregates, J. Microsc. (Paris) 21:185.Google Scholar
  34. Evans, C. W., and Curtis, A. S. G., 1979, Graft rejection in sponges: Its relation to cell aggregation studies, Colloa. Int. CNRS 291:211.Google Scholar
  35. Evans, C. W., Kerr, J., and Curtis, A. S. G., 1980, Graft rejection and immune memory in marine sponges, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 27–34, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  36. Faulkner, D. J., 1977, Interesting aspects of marine natural products chemistry, Tetrahedron 33:1421.CrossRefGoogle Scholar
  37. Galtsoff, P. S., 1929, Heteroagglutination of dissociated sponge cells, Biol. Bull. 57:250.CrossRefGoogle Scholar
  38. Galtsoff, P. S., Brown, H. H., Smith, C. L., and Walton-Smith, F. G., 1939, Sponge mortality in the Bahamas, Nature (London) 143:807.CrossRefGoogle Scholar
  39. Garrone, R., and Pottu, J., 1973, Collagen biosynthesis in sponges: Elaboration of spongin by spongocytes, J. Submicrosc. Cytol. 5:199.Google Scholar
  40. Harrison, F. W., 1972, The nature and role of the basal pinacoderm of Corvomeyenia carolinensis: A histochemical and developmental study, Hydrobiologia 39:495.CrossRefGoogle Scholar
  41. Hildemann, W. H., 1977, Specific immunorecognition by histocompatibility markers: The original polymorphic system of immunoreactivity characteristic of all multicellular animals, Immunogenetics 5:193.CrossRefGoogle Scholar
  42. Hildemann, W. H., Johnston, I. S., and Jokiel, P. L., 1979, Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges, Science 204:420.PubMedCrossRefGoogle Scholar
  43. Hildemann, W. H., Bigger, C. H., Jokiel, P. L., and Johnston, I. S., 1980a, Characteristics of immune memory in invertebrates, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 9–14, Elsevier/North-Holland, Amsterdam.Google Scholar
  44. Hildemann, W. H., Bigger, C. H., Johnston, I. S., and Jokiel, P. L., 1980b, Characteristics of transplantation immunity in the sponge, Callyspongia diffusa, Transplantation 30:362.CrossRefGoogle Scholar
  45. Humphreys, S., Humphreys, T., and Sano, J., 1977, Organization and polysaccharides of sponge aggregation factor, J. Supramol. Struct. 7:339.PubMedCrossRefGoogle Scholar
  46. Humphreys, T., 1963, Chemical dissolution and in vitro reconstruction of sponge cell adhesion. I. Isolation and functional demonstration of components involved, Dev. Biol. 8:27.CrossRefGoogle Scholar
  47. Hyman, L. H., 1940, The Invertebrates, Volume 1, Protozoa through Ctenophora, McGraw-Hill, New York.Google Scholar
  48. Jackson, J. B. C., and Buss, L., 1975, Allelopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci. USA 72:5160.PubMedCrossRefGoogle Scholar
  49. Jakowska, S., and Nigrelli, R. F., 1960, Antimicrobial substances from sponges, Ann. N.Y. Acad. Sci. 90:913.PubMedCrossRefGoogle Scholar
  50. Johnston, I. S., Jokiel, P. L., Bigger, C. H., and Hildemann, W. H., 1981, The influence of temperature on the kinetics of allograft reactions in a tropical sponge and a reef coral, Biol. Bull. 160:280.CrossRefGoogle Scholar
  51. Johnston, I. S., and Hildemann, W. H., 1982, Cellular organization in the marine demosponge Callyspongia diffusa, Mar. Biol. 67:1.CrossRefGoogle Scholar
  52. Kartha, S., and Mookerjee, S., 1979, Cell contact in aggregating sponge cells: An ultrastructural study, Mikroskopie 35:213.PubMedGoogle Scholar
  53. Lauckner, G., 1980, Diseases of Porifera, in: Diseases of Marine Animals, Vol. 1, General Aspects, Protozoa to Gastropoda (O. Kinne, ed.), pp. 139–165, John Wiley & Sons, Chichester.Google Scholar
  54. Leith, A., 1979, Role of aggregation factor and cell type in sponge cell adhesion, Biol. Bull. 156:212.PubMedCrossRefGoogle Scholar
  55. Levi, C., 1970, Sponge cells, Symp. Zool. Soc. London 25:353.Google Scholar
  56. Litchfield, J. T., 1949, A method for rapid graphic solution of time-per cent effect curves, J. Pharmacol. Exp. Ther. 97:399.PubMedGoogle Scholar
  57. MacLennan, A. P., 1970, Polysaccharides from sponges and their possible significance in cellular aggregation, Symp. Zool. Soc. London 25:299.Google Scholar
  58. MacLennan, A. P., 1974, The chemical basis for taxon-specific cellular reaggregation and self-not-self recognition in sponges, Arch. Biol. 85:53.Google Scholar
  59. MacLennan, A. P., and Dodd, R. Y., 1967, Promoting activity of extracellular materials on sponge cell reaggregation, J. Embryol. Exp. Morphol. 17:473.PubMedGoogle Scholar
  60. McClay, D. R., 1974, Cell aggregation properties of cell surface factors from five species of sponge, J. Exp. Zool. 188:89.PubMedCrossRefGoogle Scholar
  61. Mclntyre, D. E., Faulkner, D. J., Van Engen, D., and Clardy, J., 1979, Renierone, an antimicrobial metabolite from a marine sponge, Tetrahedron Lett. 43:4163.CrossRefGoogle Scholar
  62. Moscona, A. A., 1968, Cell aggregation: Properties of specific cell-ligands and their role in the formulation of multicellular systems, Dev. Biol. 18:250.PubMedCrossRefGoogle Scholar
  63. Muller, C. H., 1970, The role of allelopathy in the evolution of vegetation, in: Biochemical Coevolution (K. L. Chambers, ed.), pp. 13–31, Oregon State University Press, Corvallis.Google Scholar
  64. Müller, W. E. G., and Zahn, R. K., 1973, Purification and characterization of a species-specific aggregation factor in sponges, Exp. Cell Res. 80:95.PubMedCrossRefGoogle Scholar
  65. Müller, W. E. G., Müller, I., Kurelec, B.and Zahn, R. K., 1976a, Species specific aggregation factor in sponges. IV. Inactivation of the aggregation factor by mucoid cells from another species, Exp. Cell Res. 98:31.PubMedCrossRefGoogle Scholar
  66. Müller, W. E. G., Müller, I., Zahn, R. K., and Kurelec, B., 1976b, Species-specific aggregation factor in sponges, VI. Aggregation receptor from the cell surface, J. Cell Sci. 21:227.PubMedGoogle Scholar
  67. Müller, W. E. G., Müller, I., and Zahn, R. K., 1978a, Aggregation in sponges, Res. Mol. Biol. (Akad. Wiss. Lit.) 8:1.Google Scholar
  68. Müller, W. E. G., Zahn, R. K., Kurelec, B., Uhlenbruck. G., Vaith, P., and Müller, I., 1978b, Aggregation of sponge cells. XVIII. Glycosyltransferases associated with the aggregation factor, Hoppe-Seyler’s Z. Physiol. Chem. 359:529.CrossRefGoogle Scholar
  69. Müller, W. E. G., Zahn, R. K., Kurelec, B., Müller, I., Vaith, P., and Uhlenbruck, G., 1979a, Aggregation of sponge cells: Isolation and characterization of an inhibitor of aggregation receptor from the cell surface, Eur. J. Biochem. 97:585.PubMedCrossRefGoogle Scholar
  70. Müller, W. E. G., Kurelec, B., Zahn, R. K., Müller, I., Vaith, P., and Uhlenbruck, G., 1979b, Aggregation of sponge cells: Function of a lectin in its homologous biological system, J. Biol. Chem. 254:7479.PubMedGoogle Scholar
  71. Muscatine, L., Karakashian, S. J., and Karakashian, M. W., 1967, Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant hydra, Comp. Biochem. Physiol. 20:1.CrossRefGoogle Scholar
  72. Paris, J., 1961, Greffes et sérologie chez les éponges silicieuses, Vie Milieu Ser. A Suppl. 11:1.Google Scholar
  73. Parish, C. R., 1977, Simple model for self-non-self discrimination in invertebrates, Nature (London) 267:711.CrossRefGoogle Scholar
  74. Pavans de Ceccatty, M., and Garrone, R., 1971, Fibrogenèse du collagène chez l’éponge Chondrosia reniformis Nardo (démosponge, tétractinellide): Origine et évolution des lophocytes, C.R. Acad. Sci. Ser. D 273:1957.Google Scholar
  75. Randall, J. E., and Hartman, W. D., 1968, Sponge-feeding fishes of the West Indies, Mar. Biol. 1:216.CrossRefGoogle Scholar
  76. Reiswig, H. M., 1971a, In situ pumping activities of tropical Demospongiae, Mar. Biol. 9:38.CrossRefGoogle Scholar
  77. Reiswig, H. M., 1971b, Particle feeding in natural populations of three marine demosponges, Biol. Bull. 141:568.CrossRefGoogle Scholar
  78. Rothenberg, B. E., 1978, The self recognition concept: An active function for the molecules of the histocompatibility complex based on the complementary interaction of protein and carbohydrate, Dev. Comp. Immunol. 2:23.PubMedCrossRefGoogle Scholar
  79. Rützler, K., 1970, Spatial competition among Porifera: Solution by epizoism, Oecologia (Berlin) 5:85.CrossRefGoogle Scholar
  80. Sara, M., 1968, Bispecific cell aggregation of the sponges Haliclona elegans and Tethya citrina, Acta Embryol. Morphol. Exp. 10:228.Google Scholar
  81. Sara, M., 1970, Competition and cooperation in sponge populations, Symp. Zool. Soc. London 25:273.Google Scholar
  82. Sara, M., and Vacelet, J., 1973, Ecologie des demosponges, in: Traité de Zoologie, Anatomie, Systematique, Biologie: Spongiares (P. P. Grasse, ed.), pp. 462–576, Masson, Paris.Google Scholar
  83. Simpson, T. L., 1973, Coloniality among the Porifera, in: Animal Colonies (R. S. Boardman, A. H. Cheetham, and W. A. Oliver, eds.), pp. 549–565, Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
  84. Simpson, T. L., and Vaccaro, C. A., 1974, An ultrastructural study of silica deposition in the freshwater sponge Spongilla lacustris, J. Ultrastruct. Res. 47:296.CrossRefGoogle Scholar
  85. Smith, D., Muscatine, L., and Lewis, D., 1969, Carbohydrate movement from autotrophs to hetero-trophs in parasitic and mutualistic symbiosis, Biol. Rev. 44:17.PubMedCrossRefGoogle Scholar
  86. Spiegel, M., 1955, The reaggregation of dissociated sponge cells, Ann. N.Y. Acad. Sci. 60:1056.PubMedCrossRefGoogle Scholar
  87. Tuzet, O., and Paris, J., 1964, Réactions tissulaires de l’éponge Suberites domuncula (Olivi) Nardo, vis-à-vis de ses commensaux et parasites, Vie Milieu Ser. A Suppl. 17:147.Google Scholar
  88. Tyler, J. C., and Böhlke, J. E., 1972, Records of sponge dwelling fishes, primarily of the Caribbean, Bull. Mar. Sci. 22:601.Google Scholar
  89. Vacelet, J., 1975, Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida), J. Microsc. Biol. Cell. 23:271.Google Scholar
  90. Vacelet, J., and Donadey, C. J., 1977, Electron microscope study of the association between some sponges and bacteria, J. Exp. Mar. Biol. Ecol. 30:301.CrossRefGoogle Scholar
  91. Vaith, P., Müller, W. E. G., and Uhlenbruck, G., 1979a, On the role of D-glucuronic acid in the aggregation of cells from the marine sponge Geodia cydonium, Dev. Comp. Immunol. 3:259.CrossRefGoogle Scholar
  92. Vaith, P., Uhlenbruck, G., Müller, W. E. G., and Holz, G., 1979b, Sponge aggregation factor and sponge hemagglutinin: Possible relationships between two different molecules, Dev. Comp. Immunol. 3:399.PubMedCrossRefGoogle Scholar
  93. Van de Vyver, G., 1970, La non-confluence intraspécifiques chez les spongiaires et la notion d’individu, Ann. Embryol. Morphog. 3:251.Google Scholar
  94. Van de Vyver, G., 1975, Phenomena of cellular recognition in sponges, Curr. Top. Dev. Biol. 10:123.PubMedCrossRefGoogle Scholar
  95. Van de Vyver, G., and Buscema, M., 1977, Phagocytic phenomena in different types of freshwater sponge aggregates, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 3–8, Elsevier/North-Holland, Amsterdam.Google Scholar
  96. Walton-Smith, F. G., 1941, Sponge disease in British Honduras and its transmission by water currents, Ecology 22:415.CrossRefGoogle Scholar
  97. Weinbaum, G., and Burger, M. M., 1973, A two component system for surface guided reassociation of animal cells, Nature (London) 244:510.CrossRefGoogle Scholar
  98. Wilkinson, C. R., 1978, Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges, Mar. Biol. 49:177.CrossRefGoogle Scholar
  99. Wilkinson, C. R., 1979, Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges, Arch. Microbiol. 123:101.CrossRefGoogle Scholar
  100. Wilkinson, C. R., and Fay, P., 1979, Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria, Nature (London) 279:527.CrossRefGoogle Scholar
  101. Wilkinson, C. R., and Vacelet, J., 1979, Transplantation of marine sponges to different condition of light and current, J. Exp. Mar. Biol. Ecol. 37:91.CrossRefGoogle Scholar
  102. Wilson, H. V., 1907, On some phenomena of coalescence and regeneration in sponges, J. Exp. Zool. 5:245.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ian S. Johnston
    • 1
  • William H. Hildemann
    • 2
  1. 1.Department of BiologyNorthwestern CollegeOrange CityUSA
  2. 2.Department of Microbiology and Immunology, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations