Advertisement

Ontogeny of Immunological Functions in Amphibians

  • Louis Du Pasquier

Abstract

The theoretical basis for studying the ontogeny of immunological function in amphibians is linked to aspects of amphibian embryonic and larval development. The free-swimming larval period, the absence of maternal-fetal interactions, the relative simplicity of the larval immune system, and metamorphosis with its associated differentiation of adult antigens, all pose a variety of interesting problems to the developing immune system and to developmental immunologists. Answers to these problems can provide information in at least three major areas of research in immunology: the origin of antibody diversity, the role of the thymus, and the generation of tolerance to self. Moreover, the comparison between the development of the strikingly different immune systems of urodeles and anurans can reveal the phylogenetic aspects of some components of the immune system. During the past decade, amphibian models have been significantly refined largely due to the introduction: of biologically defined strains both in urodeles and in anurans (De Lanney and Blackler, 1969; Charlemagne and Tournefier, 1974; Nace and Richards, 1969; Kobel and Du Pasquier, 1977; Tochinai and Katagiri, 1975); of clones of isogenic and histocompatibility-defined Xenopus (Kobel and Du Pasquier, 1975, 1977); of natural (Tymowska and Fischberg, 1973) and laboratory-made polyploid species of Xenopus (Du Pasquier et al., 1977); and finally, of hyperdiploid Xenopus hybrids convenient for gene mapping (Kobel and Du Pasquier, 1979; Du Pasquier and Kobel, 1979).

Keywords

Xenopus Laevis Allograft Rejection Graft Rejection Histocompatibility Antigen Skin Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosius, H., Hemmerling, J., Richter, R., and Schimke, R., 1970, Immunoglobulins and the dynamics of antibody formation in Poikilothermic vertebrates, in: Developmental Aspects of Antibody Formation and Structure (J. Sterzi and I. Riha, eds.), pp. 727–749, Academia, Prague.Google Scholar
  2. Amirante, G. A., and Parisi, V., 1967, Anticorpopoeisi e carateri serologici negli anfibi, Accad. Nazio. Lincei. Fasc. 1 13:88.Google Scholar
  3. Baculi, B. S., and Cooper, E. L., 1970, Histopathology of skin allograft rejection in larval Rana catesbeiana, J. Exp. Zool. 173:329.CrossRefGoogle Scholar
  4. Barlow, E. H., 1980, Thymus dependency and in vitro correlates of perimetamorphic tolerance in Xenopus laevis, Ph.D. thesis, University of Rochester.Google Scholar
  5. Barlow, E. H., Di Marzo, S. J., and Cohen, N., 1981, Prolonged survival of MHC disparate skin allografts transplanted to the metamorphosing toad, Xenopus laevis, Transplantation 32:51.CrossRefGoogle Scholar
  6. Bernard, C. C. A., Bordman, G., Blomberg, B., and Du Pasquier, L., 1981, Genetic control of T helper cell function in the clawed toad, Xenopus laevis, Eur. J. Immunol. 11:151.CrossRefGoogle Scholar
  7. Bernardini, N., Chardonnens, X., and Simon, D., 1969a, Etude du comportement immunologique chez Xenupus laevis, en présence de deux greffes cutanées différentes, C.R. Acad. Sci. Ser. D. 269:1107.Google Scholar
  8. Bernardini, N., Chardonnens, X., and Simon, D., 1969b, Développement après Ia métamorphose de compétence immunologiques envers les homogreffes cutanées chez Xenopus laevis Daudin, C.R. Acad. Sci. 269:1011.Google Scholar
  9. Bernardini, N., Chardonnens, X., and Simon, D., 1970, Tolérance des allogreffes cutanées chez Xenopus laevis: Influence de Ia taille et de l’âge du greffon, C.R. Acad. Sci. 270:2351.Google Scholar
  10. Blomberg, B., Bernard, C. C. A., and Du Pasquier, L., 1980, In vitro evidence for T-B lymphocyte collaboration in the clawed toad, Xenopus, Eur. J. Immunol. 10:869.PubMedCrossRefGoogle Scholar
  11. Bovbjerg, A. M., 1966, Rejection of skin homografts in larvae of Rana pipiens, J. Exp. Zool. 161:69.CrossRefGoogle Scholar
  12. Chardonnens, X., 1975, Tissue typing by skin grafting during metamorphosis of the toad Xenopus laevis (Daudin), Experientia 31:237.PubMedCrossRefGoogle Scholar
  13. Chardonnens, X., 1976, Ia tolérance aux antigènes d’histocompatibilif pendant Ia métamorphose de 1’Amphibien Anoure, Xenopus laevis: Un modèle pour l’étude de Ia tolérance au self, Thèse Université de Genève, No. 1748.Google Scholar
  14. Chardonnens, X., and Du Pasquier, L., 1973, Induction of skin allograft tolerance during metamorphosis of the toad Xenopus laevis: A possible model for studying generation of self tolerance to histocompatibility antigens, Eur. J. Immunol. 3:569.PubMedCrossRefGoogle Scholar
  15. Charlemagne, J., 1974, Larval thymectomy and transplantation immunity in the urodele Pleurodeles waltlii (Michah) (Salamandridae), Eur. J. Immunol. 4:390.PubMedCrossRefGoogle Scholar
  16. Charlemagne, J., and Houillon, C., 1968, Effects de Ia thymectomie larvaire chez 1’Amphibien Urodèle, Pleurodeles waltilii Michah: Production à l’état adulte d’une tolérance aux homogreffes cutanées, C.R. Acad Sci. 267:253.Google Scholar
  17. Charlemagne, J., and Tournefier, A., 1974, Obtention of histocompatible strains in the Urodele Amphibian Pleurodeles waltlii Michah. (Salamandridae), J. Immunogenet. 1:125.Google Scholar
  18. Charlemagne, J., and Tournefier, A., 1975, Cell surface immunoglobulins of thymus and spleen lymphocytes in urodele amphibian Pleurodeles waltlii Salamandridae, Adv. Exp. Med. Biol. 64:251.PubMedGoogle Scholar
  19. Charlemagne, J., and Tournefier, A., 1977a, Humoral response to Salmonella typhimurium antigens in normal and thymectomized urodele amphibian Pleurodeles waltlii Michah, Eur. J. Immunol. 7:500.CrossRefGoogle Scholar
  20. Charlemagne, J., and Tournefier, A., 1977b, Anti-horse red blood cells antibody synthesis in the Mexican axolotl (Ambi/stoma mexicanum): Effect of thymectomy, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 267–276, Elsevier/North-Holland, Amsterdam.Google Scholar
  21. Ching, Y. C., and Wedgwood, R. J., 1967, Immunologic responses in the Axolotl, Siredon mexicanum, J. Immunol. 99:191.Google Scholar
  22. Clark, J. C., and Newth, D. R., 1972, Immunological activity of transplanted spleens in Xenopus laevis, Experientia 28:951.CrossRefGoogle Scholar
  23. Clayton, R. M., 1957, Antigens in the developing newt embryo, Nature (London) 168:120.CrossRefGoogle Scholar
  24. Cohen, N., 1969, Immunogenetic and developmental aspects of tissue transplantation immunity in urodele amphibians, in: Biology of Amphibian Tumors (M. Mizell, ed.), pp. 153–158, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  25. Cohen, N., 1976, Phylogeny of the major histocompatibility complex: Theoretical implications of studies with urodele amphibians, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 169–182, Elsevier-North-Holland, Amsterdam.Google Scholar
  26. Cohen, N., Di Marzo, S. J., and Hailparn-Barlow, E., 1980, Induction of tolerance to alloantigens of the major histocompatibility complex in the metamorphosing frog, Xenopus laevis, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 225–231, Elsevier/North-Holland, Amsterdam.Google Scholar
  27. Collie, H., Turner, R. J., and Manning, M. J., 1975, Antibody production to lipopolysaccharide in thymectomixed Xenopus, Eur. J. Immunol. 5:426.CrossRefGoogle Scholar
  28. Collins, N. H., Manickavel, V., and Cohen, N., 1975, In vitro responses of urodele lymphoid cells: Mitogenic and mixed lymphocyte culture reactivities, Adv. Exp. Med. Biol. 64:305.PubMedGoogle Scholar
  29. Cooper, E. L., 1973, The thymus and lymphomyeloid system in Poikilothermic vertebrates, in: Contemporary Topics in Immunobiology, Volume 2, Thymus Dependency (A. J. S. Davis and R. C. Carter, eds.), pp. 13–38, Plenum Press, New York.CrossRefGoogle Scholar
  30. Cooper, E. L., and Hildemann, W. H., 1965a, The immune response of larval bullfrog Rana catesbeiana to diverse antigens, Ann. N.Y. Acad. Sci. 126:647.CrossRefGoogle Scholar
  31. Cooper, E. L., and Hildemann, W. H., 1965b, Allograft reactions in bullfrog larvae in relation to thymectomy, Transplantation 3:446.CrossRefGoogle Scholar
  32. Cooper, E. L., Hildemann, W. H., and Pinkerton, W., 1963, Serum antibody synthesis and skin homograft survival in larvae of the bullfrog Rana catesbeiana: Role of the thymus gland, Immunogenet. Lett. 3:63.Google Scholar
  33. Cooper, E. L., Pinkerton, W., and Hildemann, W. H., 1964, Serum antibody synthesis in larvae of the bullfrog, Rana catesbeiana, Biol. Bull. 127:232.CrossRefGoogle Scholar
  34. Curtis, S. K., and Volpe, E. P., 1971, Modification of responsiveness to allografts in larvae of the leopard frog by thymectomy, Dev. Biol. 25:177.PubMedCrossRefGoogle Scholar
  35. Dardenne, M., Tournefier, A., Charlemagne, J., and Bach, J.-F., 1973, Studies on thymus products. VII. Presence of thymic hormone in urodele serum, Ann. Immunol. (Inst. Pasteur) 124C:465.Google Scholar
  36. Davison, J., 1966, Chimeric and ex-parabiotic frogs (Rana pipiens): Specificity of tolerance, Science 152:1250.PubMedCrossRefGoogle Scholar
  37. De Lanney, L. E., and Blackler, K., 1969, Acceptance and regression of a strain specific lymphosarcoma in Mexican exolotls, in: Biology of Amphibian Tumors (M. Mizell, ed.), pp. 399–408, Springer-Verlag, Berlin.Google Scholar
  38. De Lanney, L. E., Collins, N. H., Cohen, N., and Reid, R., 1975, Transplantation immunogenetics and MLC reactivities of partially inbred strains of salamanders (A. mexicanum): Preliminary studies, Adv. Exp. Med. Biol. 64:315.Google Scholar
  39. Di Marzo, S. J., and Cohen, N., 1979, Ontogeny of alloimmunity to major histocompatibility antigens in the frog, Xenopus, Am. Zool. 19:856.Google Scholar
  40. Du Pasquier, L., 1965, Aspects cellulaires et humoraux de l’intolérance aux homogreffes de tissu musculaire chez le têtard d’ Alytes obstetricans: Rôle du thymus, C.R. Acad. Sci. Ser. D 261:1144.Google Scholar
  41. Du Pasquier, L., 1968, Les protéines sériques et le complexe lympho-myéloïde chez le têtard d’ Alytes obstetricans normal et thymectomisé, Ann. Inst. Pasteur (Paris) 114:490.Google Scholar
  42. Du Pasquier, L., 1970, Ontogeny of the immune response in animals having less than one million lymphocytes: The larvae of the toad Alytes obstetricans, Immunology 19:353.Google Scholar
  43. Du Pasquier, L., 1973, Ontogeny of Immune Response in Cold-Blooded Vertebrates, in: Current Topics in Microbiology and Immunology, Vol. 61, pp. 37–88, Springer-Verlag, Berlin.Google Scholar
  44. Du Pasquier, L., 1976, Amphibian models for study of the ontogeny of immunity, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 390–418, Dlackwell, Oxford.Google Scholar
  45. Du Pasquier, L., and Bernard, C. C. A., 1980, Active suppression of the allogeneic histocompatibility reactions during the metamorphosis of the clawed toad Xenopus, Differentiation 16:1.CrossRefGoogle Scholar
  46. Du Pasquier, L., and Chardonnens, X., 1975, Genetic aspect of the tolerance to allografts induced at metamorphosis in the toad Xenopus laevis, Immunogenetics 2:431.CrossRefGoogle Scholar
  47. Du Pasquier, L., and Haimovich, J., 1974, Changes in affinity of IgM antibodies in amphibian larvae, Eur. J. Immunol. 4:580.PubMedCrossRefGoogle Scholar
  48. Du Pasquier, L., and Haimovich, J., 1976, The antibody response during amphibian ontogeny, Immunogenetics 3:381.CrossRefGoogle Scholar
  49. Du Pasquier, L., and Horton, J. D., 1976, The effect of thymectomy on the mixed leukocyte reaction and phytohemagglutinin responsiveness in the clawed toad Xenopus laevis, Immunogenetics 3:105.CrossRefGoogle Scholar
  50. Du Pasquier, L., and Kobel, H. R., 1979, Histocompatibility antigens and immunoglobulin genes in the clawed toad: Expression and linkage analysis in recombinant and hyperdiploid Xenopus hybrids, Immunogenetics 8:299.CrossRefGoogle Scholar
  51. Du Pasquier, L., and Wabl, M. R., 1976, Antibody diversity studied in amphibians, in: The generation of Antibody Diversity: A New Look (A. J. Cunningham, ed.), pp. 151–164, Academic Press, New York.Google Scholar
  52. Du Pasquier, L., and Weiss, N., 1973, The thymus during the ontogeny of the toad Xenopus laevis: Growth, membrane-bound immunoglobulins and mixed lymphocyte reaction, Eur. J. Immunol. 3:773.PubMedCrossRefGoogle Scholar
  53. Du Pasquier, L., Weiss, N., and Loor, F., 1972, Direct evidence for immunoglobulins on the surface of thymus lymphocytes of amphibian larave, Eur. J. Immunol. 2:366.PubMedCrossRefGoogle Scholar
  54. Du Pasquier, L., Chardonnens, X., and Miggiano, V. C., 1975, A major histocompatibility complex in the toad Xenopus laevis (Daudin), Immunogenetics 1:482.CrossRefGoogle Scholar
  55. Du Pasquier, L., Miggiano, V. C., Kobel, H. R., and Fischberg, H., 1977, The genetic control of histocompatibility reactions in natural and laboratory-made polyploid individuals of the clawed toad Xenopus, Immunogenetics 5:129.CrossRefGoogle Scholar
  56. Du Pasquier, L., Blomberg, B., and Bernard, C. C. A., 1979, Ontogeny of immunity in amphibians: Changes in antibody repertoires and appearance of adult major histocompatibility antigens in Xenopus, Eur. J. Immunol. 9:900.PubMedCrossRefGoogle Scholar
  57. Dupuy, G., 1964, Les autogreffes, homogreffes et hétérogreffes de peau chez les têtards de Discoglossus pictus et d’Alytes obstetricans, Thèse 3eme Cycle Ens. Sup. No. 287, Bordeaux.Google Scholar
  58. Fache, B., and Charlemagne, J., 1975, Influence on allograft rejection of thymectomy at different stages of larval development in urodele amphibian Pleurodeles waltlii Michah (Salamandridae), Eur. J. Immunol. 5:155.PubMedCrossRefGoogle Scholar
  59. Fougereau, M., and Houdayer, M., 1968, Immunoglobulines et réponse immunitaire chez l’Axolotl (Abystoma mexicanum), Ann. Inst. Pasteur (Paris) 115:968.Google Scholar
  60. Geczy, C. L., Green, P. C., and Steiner, L., 1973, Immunoglobulins in the developing amphibian Rana catesbeiana, J. Immunol. 111:1261.Google Scholar
  61. Goldshein, S. J., and Cohen, N., 1972, Phylogeny of immunocompetent cells. I. In vitro blastogenesis and mitosis of toad (Bufo marinus) splenic lymphocytes in response to phy-tohemagglutinin and in mixed lymphocyte cultures, J. Immunol. 108:1025.PubMedGoogle Scholar
  62. Goldstine, S. N., Collins, N. H., and Cohen, N., 1975, Mitogens as probes of lymphocyte heterogeneity in anuran amphibians, Adv. Exp. Med. Biol. 64:1.Google Scholar
  63. Green, C., and Steiner, L. A., 1976, Low molecular weight immunoglobulins in Rana catesbeiana tadpoles, J. Immunol. 117:375.PubMedGoogle Scholar
  64. Green, N., and Cohen, N., 1979, Phylogeny of immunocompetent cells. III. Mitogen response characteristics of lymphocyte subpopulations from normal and thymectomized frogs (Xenopus laevis), Cell. Immunol. 48:59.PubMedCrossRefGoogle Scholar
  65. Hadji-Azimi, I., and Parrinello, N., 1978, The simultaneous production of two classes of cytoplasmic immunoglobulins by single cells in Xenopus laevis, Cell. Immunol. 39:316.PubMedCrossRefGoogle Scholar
  66. Haimovich, J., and Du Pasquier, L., 1973, Specificity of antibodies in amphibian larvae possessing a small number of lymphocytes, Proc. Natl. Acad. Sci. USA 70:1898.PubMedCrossRefGoogle Scholar
  67. Hildemann, W. H., and Haas, R., 1959, Homotransplantation immunity and tolerance in the bullfrog, J. Immunol. 83:478.Google Scholar
  68. Hildemann, W. H., and Haas, R., 1961, Histocompatibility genetics of bullfrog populations, Evolution 15:267.CrossRefGoogle Scholar
  69. Hollyfield, J. G., 1966, Erythrocyte replacement at metamorphosis in the frog Rana pipiens, J. Morphol. 119:1.PubMedCrossRefGoogle Scholar
  70. Horton, J. D., 1969, Ontogeny of the immune response to skin allografts in relation to lymphoid organ development in the amphibian Xenopus laevis Daudin, J. Exp. Zool. 170:449.PubMedCrossRefGoogle Scholar
  71. Horton, J. D., 1971, Ontogeny of the immune system in amphibians, Am. Zool. 11:219.Google Scholar
  72. Horton, J. D., and Horton, T. L., 1975, Development of transplantation immunity and restoration experiments in the thymectomized amphibian, Am. Zool. 15:73.Google Scholar
  73. Horton, J. D., and Manning, M. J., 1972, Response to skin allografts in Xenopus laevis following thymectomy at early stage of lymphoid organ maturation, Transplantation 14:141.PubMedCrossRefGoogle Scholar
  74. Horton, J. D., and Sherif, N. E. H. S., 1977, Sequential thymectomy in the clawed toad: Effect on mixed leucocyte reactivity and phytohaemagglutinin responsiveness, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 238–290, Elsevier/North-Holland, Amsterdam.Google Scholar
  75. Horton, J. D., Rimmer, J. J., and Horton, T. L., 1977, Critical role of the thymus in establishing humoral immunity in amphibians: studies on Xenopus thymectomized in larval and adult life, Dev. Comp. Immunol. 1:119.PubMedCrossRefGoogle Scholar
  76. Jurd, R. D., and Stevenson, G. T., 1976, Surface immunoglobulins on Xenopus laevis lymphocytes, Comp. Biochem. Physiol. A 53:381.PubMedCrossRefGoogle Scholar
  77. Jurd, R. D., Luther-Davies, S. M., and Stevenson, G. T., 1975, Humoral antibodies to soluble antigens in larvae of Xenopus laevis, Comp. Biochem. Physiol. B 50:65.PubMedCrossRefGoogle Scholar
  78. Kerbel, R. S., and Eidinger, D., 1972, Enhanced immune responsiveness to a thymus independent antigen early after thymectomy: Evidence for a short-lived inhibitory thymus-derived cell, Eur. J. Immunol. 2:114.PubMedCrossRefGoogle Scholar
  79. Kidder, G. M., Ruben, L. N., and Stevens, J. M., 1973, Cytodynamics and ontogeny of the immune response of Xenopus laevis against sheep erythrocytes, J. Embryol. Exp. Morphol. 29:73.PubMedGoogle Scholar
  80. Kobel, H. R., and Du Pasquier, L., 1975, Production of large clones of histocompatible fully identical clawed toads (Xenopus), Immunogenetics 2:87.CrossRefGoogle Scholar
  81. Kobel, H. R., and Du Pasquier, L., 1977, Strains and species of Xenopus for immunological research, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 299–306, Elsevier/ North-Holland, Amsterdam.Google Scholar
  82. Kobel, H. R., and Du Pasquier, L., 1979, Hyperdiploid species hybrids for gene mapping in Xenopus, Nature(London) 279:157.CrossRefGoogle Scholar
  83. Leverone, L., Suhar, T., Brown, R. D., and Armentrout, R. W., 1979, Characteristics of immunoglobulin synthesized early in the development of Xenopus laevis, Dev. Biol. 68:319.CrossRefGoogle Scholar
  84. Maniatis, G. M., Steiner, L. A., and Ingram, V. M., 1969, Tadpole antibodies against hemoglobin and their effect on development, Science 165:67.PubMedCrossRefGoogle Scholar
  85. Manning, M. J., 1975, The phylogeny of thymic dependence, Am. Zool. 15:63.Google Scholar
  86. Manning, M. J., and Collie, M. H., 1975, Thymic function in amphibians, Adv. Exp. Med. Biol. 64:353.PubMedGoogle Scholar
  87. Manning, M. J., Donnelly, N., and Cohen, N., 1976, Thymus-dependent and thymus-independent components of the amphibian immune system, in: Phylogeny of Thymus and Bone Marrow-Bursa cells (R. K. Wright and E. L. Cooper, eds.), pp. 123–132, Elsevier/North-Holland, Amsterdam.Google Scholar
  88. Marchalonis, J. J., and Edelman, G. M., 1966, Phylogenetic origins of antibody structure. II. Immunoglobulins in the primary immune response of the bullfrog, Rana catesbeiana, J. Exp. Med. 124:901.CrossRefGoogle Scholar
  89. Mattes, M. J., and Steiner, L. A., 1978, Surface immunoglobulin on frog lymphocytes: Identification of two lymphocyte populations, J. Immunol. 121:1116.PubMedGoogle Scholar
  90. Moticka, E. J., Brown, B. A., and Cooper, E. L., 1973, Immunoglobulin synthesis in bullfrog larvae, J. Immunol. 110:855.Google Scholar
  91. Moyer, C., Armentrout, R. W., and Brown, R. D., 1977, The onset of immunoglobulin synthesis during the development of Xenopus laevis, Dev. Biol. 61:338.PubMedCrossRefGoogle Scholar
  92. Nace, G. W., and Richards, C. M., 1969, Development of biologically defined strains of amphibians, in: Biology of Amphibian Tumors (M. Mizell, éd.), pp. 409–418, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  93. Nagata, S., 1976, Immune response against skin allograft and rabbit red blood cells in metamorphosing and metamorphosis-inhibited Xenopus laevis, J. Fac. Sci. Hokkaido Univ. Sew. 6 20:183.Google Scholar
  94. Nagata, S., and Katagiri, C., 1978, Lymphocyte surface immunoglobulin in Xenopus laevis. Light and electron microscopic demonstration by immuno peroxidase method, Dev. Comp. Immunol. 2:277.PubMedCrossRefGoogle Scholar
  95. Nieuwkoop, P. D., and Faber, J., 1967, Normal Table of Xenopus laevis Daudin, 2nd ed., North-Holland, Amsterdam.Google Scholar
  96. Orfila, C., and Deparis, P., 1970, Influance de Tage du donneur et du receveur sur révolution des homogreffes cutanées chez les larves du triton “Pleurodeles waltlii Michah,” Pathol. Biol. 18:1033.PubMedGoogle Scholar
  97. Pross, S. H., and Rowland, D. T., Jr., 1975, Immunity in the developing amphibians, Adv. Exp. Med. Biol. 64:373.PubMedGoogle Scholar
  98. Rimmer, J. J., and Horton, J. D., 1977, Allograft rejection in larval and adult Xenopus following early thymectomy, Transplantation 23:142.PubMedCrossRefGoogle Scholar
  99. Romanovsky, A., 1964, Studies on antigenic differentiation in the embryonic development of Rana temporaria, Folia Biol. (Prague) 10:1.Google Scholar
  100. Ruben, L. N., Clothier, R., Hodgson, R., and Balls, M., 1977, The in vitro reconstitution of a thymus cell dependent humoral immune response in spleens of thymectomized Xenopus laevis with allogeneic thymocytes, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 227–283, Elsevier/North-Holland, Amsterdam.Google Scholar
  101. Sidman, C. L., Shultz, L. D., and Unanue, E. R., 1978, The mouse mutant motheaten. 1. Development of lymphocyte populations, J. Immunol. 121:2392.PubMedGoogle Scholar
  102. Simnett, J. D., 1966, Factors influencing the differentiation of amphibian embryos implanted into homologous immunologically competent hosts (Xenopus laevis), Dev. Biol. 13:112.PubMedCrossRefGoogle Scholar
  103. Spar, I. L., 1953, Antigenic differences among early developmental stages of Rana pipiens, J. Exp. Zool. 123:467.CrossRefGoogle Scholar
  104. Tochinai, S., 1976, Demonstration of thymus-independent immune system in Xenopus laevis: Response to polyvinylpyrrolidone, Immunology 31:125.PubMedGoogle Scholar
  105. Tochinai, S., and Katagiri, C., 1975, Complete abrogation of immune response to skin allografts and rabbit erythrocytes in the early thymectomized Xenopus, Dev. Growth Differ. 17:383.CrossRefGoogle Scholar
  106. Tochinai, S., Nagata, S., and Katagiri, C., 1976, Restoration of immune responsiveness in early thymectomized Xenopus by implantation of histocompatible adult thymus, Eur. J. Immunol. 6:711.PubMedCrossRefGoogle Scholar
  107. Tournefier, A., 1973, Développemnt des organes lymphoïdes chez 1’Amphibien Urodèle Triturus alpestris Laur.: Tolérance des allogreffes après Ia thymectomie larvaire, J. Embryol. Exp. Morphol. 29:382.Google Scholar
  108. Tournefier, A., 1968, Etude histologique des hétérogreffes embryonnaires de tégument chez les Amphibiens Urodèles, Bull. Soc. Zool. France 93:99.Google Scholar
  109. Triplett, E. L., 1962, On the mechanism of immunologic self recognition, J. Immunol. 89:505.PubMedGoogle Scholar
  110. Turner, R. J., and Manning, M. J., 1974, Thymic dependence of amphibian antibody response, Eur. J. Immunol. 4:343.PubMedCrossRefGoogle Scholar
  111. Turpen, J. B., and Cohen, N., 1976, Alternate sites of lymphopoiesis in the amphibian embryo, Ann. Immunol. (Inst. Pasteur) 127C:841.Google Scholar
  112. Tymowska, J., and Fischberg, M., 1973, Chromosome complements of the genus Xenopus, Chromosoma 44:335.CrossRefGoogle Scholar
  113. Volpe, E. P., 1964, Fate of neural crest homotransplants in pattern mutants of the leopard frog, J. Exp. Zool. 157:179.PubMedCrossRefGoogle Scholar
  114. Volpe, E. P., 1971, Immunological tolerance in amphibians, Am. Zool. 11:207.Google Scholar
  115. Volpe, E. P., and Gebhardt, B. M., 1965, Effect of dosage on the survival of embryonic homo-transplants in the leopard frog Rana pipiens, J. Exp. Zool. 160:11.PubMedCrossRefGoogle Scholar
  116. Von Boehmer, H., Shortman, K., and Adams, P., 1972, Nature of the stimulating cell in the syngeneic and the allogeneic mixed lymphocyte reaction in mice, J. Exp. Med. 136:1648.CrossRefGoogle Scholar
  117. Wabl, M. R., Brun, R. B., and Du Pasquier, L., 1975, Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development, Science 190:1310.PubMedCrossRefGoogle Scholar
  118. Weiss, N., Horton, J. D., and Du Pasquier, L., 1973, The effect of thymectomy on cell surface associated and serum immunoglobulin in the toad Xenopus laevis (Daudin): A possible inhibitory role of the thymus on the expression of immunoglobulins, in: L’Etude phylogénique et on-togénique de Ia réponse immunitaire et son apport à Ia théorie immunologique (J. Panijel and P. Liacopoulos, eds.), pp. 165–174, INSERM, Paris.Google Scholar
  119. Zinkernagel, R. M., Callahan, G. N., Klein, J., and Dennert, G., 1978, Cytotoxic T cells learn specificity for self H-2 during differentiation in the thymus, Nature (London) 271:251.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Louis Du Pasquier
    • 1
  1. 1.Basel Institute for ImmunologyBaselSwitzerland

Personalised recommendations